
PCL - The Performance Counter Library:
A Common Interface to Access Hardware Performance

Counters on Microprocessors
(Version 2.2)

Rudolf Berrendorf
University of Applied Sciences Bonn-Rhein-Sieg

Computer Science Department
53754 Sankt Augustin, Germany

rudolf.berrendorf@fh-bonn-rhein-sieg.de

Bernd Mohr
Research Centre Juelich GmbH

Central Institute for Applied Mathematics
52425 Juelich, Germany

b.mohr@fz-juelich.de

ii

Abstract

A performance counter is that part of a microprocessor that measures and gathers performance-relevant
events on the microprocessor. The number and type of available events differ significantly between existing
microprocessors, because there is no commonly accepted specification, and because each manufacturer has
different priorities on analyzing the performance of architectures and programs. Looking at the supported
events on the different microprocessors, it can be observed that the functionality of these events differs from
the requirements of an expert application programmer or a performance tool writer.
PCL, the Performance Counter Library, establishes a common platform for performance measurements on a
wide range of computer systems. With a common interface on all systems and a set of application-oriented
events defined, the application programmer is able to do program optimization in a portable way and the
performance tool writer is able to rely on a common interface on different systems. A low-level interface
gives the user direct access to the hardware performance counters to measure non-standard events.
PCL has functions to query the functionality, to start and to stop counters, and to read the values of counters.
Performance counter values are returned as 64 bit integers (or floating point numbers for some events) on all
systems. PCL supports nested calls to PCL functions thus allowing hierarchical performance measurements.
Counting may be done either in system or in user mode. All interface functions are callable in C, C++,
Fortran, and Java.

iv

Contents

1 Introduction 1

2 Requirements of Application Programmers 2
2.1 Memory Hierarchy . 2
2.2 Instructions . 3
2.3 Status of Functional Units . 3
2.4 Rates and Ratios . 4

3 PCL – The Performance Counter Library 5
3.1 Countable Events . 5
3.2 Interface Functions . 19

3.2.1 High-Level Interface . 19
3.2.2 Low-Level Interface . 20
3.2.3 Useful Macros . 22

3.3 Programming Aspects . 22
3.4 Supported Systems . 22
3.5 Examples . 23

3.5.1 Simple Example . 23
3.5.2 Example with Nested Calls . 24
3.5.3 Example in Java . 25
3.5.4 Using the low-level Interface . 26

4 Related Projects 28

5 Summary 29

6 Acknowledgments 30

A Performance Counters on Microprocessors 32
A.1 DEC Alpha . 33

A.1.1 DEC Alpha 21164 . 33
A.1.2 DEC Alpha 21264 . 36

A.2 MIPS Family . 38
A.2.1 R10000 . 38
A.2.2 R12000 . 40

A.3 SUN ULTRASparc . 44
A.3.1 UltraSPARC I/II . 44
A.3.2 UltraSPARC III . 46

A.4 PowerPC . 50
A.4.1 PowerPC 604 . 50
A.4.2 PowerPC 604e . 52
A.4.3 POWER3 . 60
A.4.4 POWER3-II . 72

A.5 Intel Pentium Family . 86
A.5.1 Intel Pentium . 86
A.5.2 Intel PentiumPro/Pentium II/Pentium III . 90
A.5.3 Intel Pentium 4 . 95

A.6 AMD Athlon Family . 103
A.6.1 AMD Athlon . 103

A.7 Intel IA64 Family . 107

v

A.8 Hitachi SR8000 . 112

vi

Chapter 1

Introduction

This report describes performance counters on all major microprocessors families and introduces a common
interface to access these counters. With performance counters, performance critical events can be counted.
This includes all aspects concerning the memory hierarchy (loads/stores, misses/hits, different cache levels,
etc.), functional units or pipelines (operation counts, stalls, issues), duration of requests, etc.
As will be shown, the number of, type of, and access to events differs significantly between the processors
and the type of supported events might be not very helpful to the application programmer or tool builder
who might have different demands of countable events.
To overcome this lack of common platform, we developed PCL, the Performance Counter Library. We
first defined a set of events useful to the application programmer and tool builder, and second, established
a set of access functions to control and access the performance counters on different platforms. PCL is
implemented on many of todays machines ranging from a PC running Linux to parallel systems capable of
Teraflops and it is callable from application programs as well as from tools.
The Performance Counter Library PCL is available at

http://www2.inf.fh-bonn-rhein-sieg.de/ � rberre2m/PCL/
and

http://www.fz-juelich.de/zam/PCL/.

1

Chapter 2

Requirements of Application
Programmers

People from different areas of computer science and electrical engineering may see different events as
most useful for their optimization purposes. Most of the events described so far in the description of the
microprocessors are likely most useful to the computer architect, hardware engineer, or low-level device
driver writer.
Application programmers optimizing their programs or performance tool writers wish to get performance
relevant information related to their programs rather than counting signal switches on certain pins of a chip
module. Therefore, those parts of the microprocessor which have appropriate counterparts in a program are
most likely to be used by the application programmer to optimize programs. The memory hierarchy in a
computer system corresponds directly to program variables and the functional units execute the operations
specified in a program. Therefore, we concentrate on those aspects of a computer system.
Our impression is, that taking the union of all available events of all microprocessors is not the right way
to define an application interface for an application programmer or tool writer. Our approach is to define
a set of events relevant to the user. If microprocessor architecture or programming methodology precedes
in a different direction (we don’t see that for the near future!), the set of events might then be extended or
changed.
Although hardware counters give numbers for a processor, performance numbers should be related to a
process (representing the program). Therefore, either the executing process should be bound to a processor,
or migrating a process to another processor should be transparent to the process (related to performance
counting). Using the second approach needs support of the operating system.
We have categorized the useful events into categories as shown in the following sections.

2.1 Memory Hierarchy

Currently, most computer systems support four levels in the memory hierarchy: registers, 1st level cache,
2nd level cache, main memory. Registers are directly controlled by a compiler, so for example, the informa-
tion how many registers keep live values could be better managed by a compiler. Although main memory
statistics could be quite useful in performance analysis (e.g. bank conflicts), performance counters in mi-
croprocessors mostly see the main memory as a black box. Therefore, we concentrate on 1st and 2nd level
caches.
Accesses to caches can be distinguished by read or write accesses, instruction loads and instruction stores
(fetches from a higher level in the hierarchy), or data load/stores. An important performance aspect is the
hit and miss rate, which can be calculated from the total number of accesses and either the number of misses
or hits. Most microprocessors use (small) translation look-aside buffers (TLB) to speed up the translation of
virtual to physical addresses. As misses in the TLB are time consuming, this number (and its relation to the
number of hits or the total number of address lookups) is a relevant number for performance optimization.
We distinguish between instruction and data caches on each level. For unified caches (i.e. instruction and
data are buffered in the same cache), it is often possible to distinguish instruction and data loads. Therefore
on those caches, PCL LxICACHE xxx and PCL LxDCACHE xxx refer to events concerning instruction and
data accesses, respectively.
The available events concerning memory hierarchy are given in table 2.1.
Due to the definition, the sum of cache reads and cache writes should be equal to cache read/writes and the
the sum of cache hits and cache misses should be equal to cache read/writes, too. Additionally, if two first

2

cache
PCL LxCACHE READ number of level-x cache reads
PCL LxCACHE WRITE number of level-x cache writes
PCL LxCACHE READWRITE number of level-x cache reads or writes
PCL LxCACHE HIT number of level-x cache hits
PCL LxCACHE MISS number of level-x cache misses
data cache
PCL LxDCACHE READ number of level-x data cache reads
PCL LxDCACHE WRITE number of level-x data cache writes
PCL LxDCACHE READWRITE number of level-x data cache reads or writes
PCL LxDCACHE HIT number of level-x data cache hits
PCL LxDCACHE MISS number of level-x data cache misses
instruction cache
PCL LxICACHE READ number of level-x instruction cache reads
PCL LxICACHE WRITE number of level-x instruction cache writes
PCL LxICACHE READWRITE number of level-x instruction cache reads or writes
PCL LxICACHE HIT number of level-x instruction cache hits
PCL LxICACHE MISS number of level-x instruction cache misses
TLB
PCL TLB HIT number of hits in TLB
PCL TLB MISS number of misses in TLB
Instruction TLB
PCL ITLB HIT number of hits in instruction TLB
PCL ITLB MISS number of misses in instruction TLB
Data TLB
PCL DTLB HIT number of hits in data TLB
PCL DTLB MISS number of misses in data TLB

Table 2.1: Events concerning memory hierarchy (x=1 or 2 for 1st or 2nd level cache)

level caches exist (instruction and data), the sum of instruction cache reads and data cache reads should be
equal to cache reads (and so on).

2.2 Instructions

Instructions correspond to operations and flow control specified in a program. There are several categories
of operations (e.g. integer, logical, floating point) which might be executed by different functional units in
the microprocessor. Another aspect (in multiprocessor systems) is atomic operations (e.g. a primitive for a
test-and-set-operations) which can be executed successful (the lock could be set) or unsuccessful (the lock
could not be acquired as it was already set). We distinguish between the instruction categories as shown in
table 2.2.
Additionally, we have included a cycle count which gives the number of cycles spent in this process or on
behalf of the process/thread (when counting in user-and-system mode). For clarification, it should be noted
that the cycle count should not be used to count the number of elapsed cycles as on multiprogramming
systems other processes might be scheduled to the same processor. To count the number of elapsed cycles,
an additional event can be used (PCL ELAPSED CYCLES).
On some systems, the number of issued instructions might be different to the number of completed in-
structions due to some error conditions. We have chosen completed instructions, as they correspond more
closely to the operations the programmer specified in his program.
Getting the number of operations out of the number of instructions is difficult. For example, on some
systems a floating-point add and a floating-point multiply can be initiated by a single add-and-multiply
instruction. Therefore, 1 floating point instruction is counted but 2 floating point operations are executed.
With PCL (and most of all hardware performance counter implementations) it is not possible to count the
number of floating point operations and related number.

2.3 Status of Functional Units

Functional units might be stalled due to blocked resources, missing operands etc. Table 2.3 gives the events
defined for stalls. Measuring such an event results (different to all other events) not in the number of stalls

3

PCL CYCLES spent cycles in process/thread (and eventually in system calls)
PCL ELAPSED CYCLES elapsed cycles
PCL INTEGER INSTR number of completed integer (or logical) instructions
PCL FP INSTR number of completed floating point instructions
PCL LOAD INSTR number of completed load instructions
PCL STORE INSTR number of completed store instructions
PCL LOADSTORE INSTR number of completed load or store instructions
PCL INSTR sum of all completed instructions
PCL JUMP SUCCESS number of correctly predicted branches
PCL JUMP UNSUCCESS number of mispredicted branches
PCL JUMP sum of all branches
PCL ATOMIC SUCCESS number of successful atomic instructions
PCL ATOMIC UNSUCCESS number of unsuccessful atomic instructions
PCL ATOMIC sum of all instructions concerning atomic operations

Table 2.2: Events concerning instruction categories

PCL STALL INTEGER number of cycles the integer/logical unit is stalled
PCL STALL FP number of cycles the floating point unit is stalled
PCL STALL JUMP number of cycles the branch unit is stalled
PCL STALL LOAD number of cycles the load unit is stalled
PCL STALL STORE number of cycles the store unit is stalled (write buffer)
PCL STALL sum of all cycles a unit is stalled

Table 2.3: Events concerning functional unit stalls (numbers given in cycles)

but in the number of cycles all stalls of this event type have taken.

2.4 Rates and Ratios

Often, it is useful to get a ratio or rate rather than an absolute number. Good examples are cache miss rates
or floating point operations per second. Table 2.4 gives the events defined for such rates and ratios.
Measuring these events will mostly be done by deriving the values from other performance numbers (see
[1]). The definitions are as follows:

� PCL MFLOPS :
����� ��� �
	���
������� ��������������������� ��!#"

� PCL IPC :
����� �$	���
%������ �&�����'���

� PCL L1DCACHE MISSRATE :
����� ��(*)+��,-��./� 01�2�������� �'3�,-)4��
%3��-� �
	5��
%�

� PCL L2DCACHE MISSRATE :
����� �'6$)+��,-��.4� 01�2�7������ ��(*)+��,-��.4� 01�2�7�

� PCL MEM FP RATIO :
����� ��3�,-)8��
%3��-� �
	���
��

����� ��� �$	���
%�

PCL MFLOPS number of million floating point instructions per second
PCL IPC number of completed instructions per cycle
PCL L1DCACHE MISSRATE miss rate of L1 data cache
PCL L2DCACHE MISSRATE miss rate for L2 data cache
PCL MEM FP RATIO ratio of memory references to floating point operations

Table 2.4: Events concerning rates and rations (numbers are floating point values)

4

Chapter 3

PCL – The Performance Counter
Library

The Performance Counter Library has a programming interface to access a set of performance counters
with a defined set of countable events. In section 3.1, we specify which of the events defined in chapter
2 are available on what systems and in section 3.2 we define the programming interface. Additionally,
we provide a uniform low-level interface to directly access performance counters on a microprocessor to
measure non-standard events.

3.1 Countable Events

In the following tables we compare the events defined in the last section in tables 2.1 to 2.3 with the available
events on the microprocessors currently supported by PCL.
The tables are given in the following scheme. Each entry in the tables specifies if a processor supports the
PCL event, and if so, what the corresponding event is. The entry names correspond to the event names
in the description of the microprocessors (see chapter A. Empty entries signal that such an event is not
available on that microprocessor. Entries in itaic are indirect events as a combination of several other events
directly countable by a (hardware) performance counter. Counters used for indirect events can not be used
at the same time to measure their own events. Therefore, on a processor any combination of PCL events is
possible which does not generate any ressource conflict.
Table 3.1 shows events relevant to the 1st level cache (instruction and data), table 3.2 shows events relevant
to the 1st level data cache, and table 3.3 shows events relevant to the 1st level instruction cache. Tables 3.4,
3.5, and 3.6 show events relevant to the 2nd level cache (instruction and data, data, instruction, respectively).
If there is a unified cache for data and instructions (as it is on most systems), events defined for 2nd level
instruction cache refer to cache references done by instruction fetches, and for the data cache accordingly.
Table 3.7 shows events for the translation look-aside buffers (instruction, data, instruction and data). Table
3.8 shows spent cycles, tables 3.10 and 3.9 shows events relevant to instructions, table 3.11 shows events
regarding branch instructions, and table 3.12 shows events ragarding atomic instructions. Table 3.13 shows
events concerning units which are blocked/stalled. Instead of counting the number of events, the number in
this table gives the number of cycles for the event type. Table 3.14 shows the events concerning rates and
ratios.

5

processor PCL L1CACHE READ PCL L1CACHE WRITE PCL L1CACHE READWRITE PCL L1CACHE HIT PCL L1CACHE MISS
Alpha
21164
21264
MIPS
R10k R10k C1 9+R10k C0 9
R12k R12k 9+R12k 25
SPARC
Ultra I/II
Ultra III
PowerPC
PPC604 PPC604 C0 5+PPC604 C1 6
PPC604e PPC604e C0 5+PPC604e C1 6
POWER3 POWER3 C0 6+POWER3 C1 9
POWER3-II POWER3II C0 6+POWER3II C1 9
Intel
Pentium MMX
Pro,PII,PIII
Pentium 4
AMD
Athlon
Hitachi
SR8000

Table
3.1:

1stlevelcache

6

processor PCL L1DCACHE READ PCL L1DCACHE WRITE PCL L1DCACHE READWRITE PCL L1DCACHE HIT PCL L1DCACHE MISS
Alpha
21164 21164 C1 14 21164 C1 14-21164 C2 5 21164 C2 5
21264
MIPS
R10k R10k C1 9
R12k R12k 25
SPARC
Ultra I/II ULTRA C0 5 ULTRA C0 6 ULTRA C0 1
Ultra III ULTRA3 C0 9 ULTRA3 C0 10
PowerPC
PPC604 PPC604 C1 6
PPC604e PPC604e C1 6
POWER3 POWER3 C0 17,POWER3 C1 19,POWER3 C5 0
POWER3-II POWER3II C0 17,POWER3II C1 19,POWER3II C5 0
Intel
Pentium MMX Pentium 0 Pentium 1 Pentium 0+Pentium 1 Pentium 37
Pro,PII,PIII PPro 1
Pentium 4 P4 CG4 16
AMD
Athlon ATHLON 2 ATHLON 2-ATHLON 3 ATHLON 3
Hitachi
SR8000 SR8000 C3

Table
3.2:

1stleveldata
cache

7

processor PCL L1ICACHE READ PCL L1ICACHE WRITE PCL L1ICACHE READWRITE PCL L1ICACHE HIT PCL L1ICACHE MISS
Alpha
21164 21164 C1 13 21164 C1 13-21164 C2 3 21164 C2 3
21264
MIPS
R10k R10k C0 9
R12k R12k 9
SPARC
Ultra I/II ULTRA C0 4 ULTRA C1 4 ULTRA C0 4-ULTRA C1 4
Ultra III ULTRA3 C0 8 ULTRA3 C0 8-ULTRA3 C1 8 ULTRA3 C1 8
PowerPC
PPC604 PPC604 C0 5
PPC604e PPC604e C0 5
POWER3 POWER3 C4 1 POWER3 C0 5,POWER3 C6 0
POWER3-II POWER3II C4 1 POWER3II C0 5,POWER3II C6 0
Intel
Pentium MMX Pentium 12 Pentium 14
Pro,PII,PIII PPro 5 PPro 6
Pentium 4
AMD P4 CG1 0
Athlon ATHLON 18 ATHLON 18-ATHLON 19 ATHLON 19
Hitachi
SR8000 SR8000 C2

Table
3.3:

1stlevelinstruction
cache

8

processor PCL L2CACHE READ PCL L2CACHE WRITE PCL L2CACHE READWRITE PCL L2CACHE HIT PCL L2CACHE MISS
Alpha 21164 C1 16 21164 C1 17 21164 C1 15 21164 C1 15-21164 C2 14 21164 C2 14
21164
21264
MIPS
R10k R10k C1 10+R10k C0 10
R12k R12k 26+R12k 10
SPARC
Ultra I/II ULTRA C0 8 ULTRA C1 8 ULTRA C1 9
Ultra III ULTRA3 C0 12 ULTRA3 C0 12-ULTRA3 C1 12 ULTRA3 C1 12
PowerPC
PPC604
PPC604e
POWER3 POWER3 C1 21
POWER3-II POWER3II C1 21
Intel
Pentium MMX
Pro,PII,PIII PPro 17 PPro 13
Pentium 4 P4 CG1 10,11,12,13 P4 CG1 10,11,12 P4 CG1 13
AMD
Athlon ATHLON 16
Hitachi
SR8000

Table
3.4:

2nd
levelcache

9

processor PCL L2DCACHE READ PCL L2DCACHE WRITE PCL L2DCACHE READWRITE PCL L2DCACHE HIT PCL L2DCACHE MISS
Alpha
21164
21264
MIPS
R10k R10k C1 10
R12k R12k 26
SPARC
Ultra I/II
Ultra III
PowerPC
PPC604
PPC604e
POWER3
POWER3-II
Intel
Pentium MMX
Pro,PII,PIII PPro 11 PPro 12 PPro 11+PPro 12
Pentium
AMD
Athlon
Hitachi
SR8000

Table
3.5:

2nd
leveldata

cache

10

processor PCL L2ICACHE READ PCL L2ICACHE WRITE PCL L2ICACHE READWRITE PCL L2ICACHE HIT PCL L2ICACHE MISS
Alpha
21164
21264
MIPS
R10k R10k C0 10
R12k R12k 10
SPARC
Ultra I/II
Ultra III
PowerPC
PPC604
PPC604e
POWER3
POWER3-II
Intel
Pentium MMX
Pro,PII,PIII
Pentium 4
AMD
Athlon
Hitachi
SR8000

Table
3.6:

2nd
levelinstruction

cache

11

processor PCL TLB HIT PCL TLB MISS PCL ITLB HIT PCL ITLB MISS PCL DTLB HIT PCL DTLB MISS
Alpha
21164 21164 C2 4 21164 C2 6
21264 21264 C1 5
MIPS
R10k R10k C1 7
R12k R12k 23
SPARC
Ultra I/II
Ultra III ULTRA3 C1 17 ULTRA3 C1 18
PowerPC
PPC604 PPC604 C0 6+PPC604 C1 7 PPC604 C1 7 PPC604 C0 6
PPC604e PPC604e C0 6+PPC604e C1 7 PPC604e C1 7 PPC604e C0 6
POWER3 POWER3 C0 19,POWER3 C8 0
POWER3-II POWER3II C0 19,POWER3II C8 0
Intel
Pentium MMX Pentium 13 Pentium 2
Pro,PII,PIII PPro 7
Pentium 4 P4 CG1 9 P4 CG1 8
AMD
Athlon ATHLON 23 ATHLON 8
Hitachi
SR8000 SR8000 C0 SR8000 C1

Table
3.7:

T
ransfer-L

ook-aside-B
uffer

12

processor PCL CYCLES PCL ELAPSED CYCLES
Alpha
21164 21164 C0 0 21164 PCC1

21264 21264 C0 0, 21264 C1 0 21264 PCC
MIPS
R10k R10k C0 0, R10k C1 0
R12k R12k 0
SPARC
Ultra I/II ULTRA C0 0, ULTRA C1 0 ULTRA TC
Ultra III ULTRA3 C0 0,ULTRA3 C1 0 ULTRA3 TC
PowerPC
PPC604 PPC604 C0 1, PPC604 C1 1
PPC604e PPC604e C0 1,PPC604e C1 1,PPC604e C2 1,PPC604e C3 1
POWER3 POWER3 C0 1 and other
POWER3-II POWER3II C0 1 and other
Intel
Pentium MMX Pentium C0 42 Pentium TSC
Pro,PII,PIII PPro 61 PPro TSC
Pentium 4 P4 CYCLES P4 TSC
AMD
Athlon ATHLON 15 ATHLON TSC
Hitachi
SR8000 SR8000 C6 special register

Table
3.8:

C
yles

1O
n

C
ray

T
3E

system
s

notas
64-bitregister.

2only
on

Pentium
M

M
X

3Floating
pointoperations

instead
of

floating
pointinstructions

are
counted.

4Issued
instructions

are
counted

instead
of

com
pleted

instructions.
5Integer

m
ultiplication

and
division

increm
ents

the
counter

by
tw

o
6C

urrently,the
softw

are
interface

doesn’tsupportthat.
7See

com
m

ents
on

Pentium
30.

8only
on

Pentium
M

M
X

9only
on

Pentium
M

M
X

10only
on

Pentium
M

M
X

13

processor PCL INTEGER INSTR PCL FP INSTR
Alpha
21164 21164 C1 9 21164 C1 103

21264
MIPS
R10k R10k C1 5
R12k R12k 21
SPARC
Ultra I/II
Ultra III ULTRA3 C0 24+ULTRA3 C1 39
PowerPC
PPC604 PPC604 C0 14 PPC604 C0 15
PPC604e PPC604e C0 14 PPC604e C0 15
POWER3 POWER3 C5 2+POWER3 C6 1+POWER3 C7 4 POWER3 C1 35+POWER3 C4 5
POWER3-II POWER3II C5 2+POWER3II C6 1+POWER3II C7 4 POWER3II C1 35+POWER3II C4 5
Intel
Pentium MMX Pentium 304

Pro,PII,PIII PPro C0 0
Pentium 4 P4 CG4 14
AMD
Athlon
Hitachi
SR8000 SR8000 C7

Table
3.9:

Instructions
(2)

14

processor PCL LOAD INSTR PCL STORE INSTR PCL LOADSTORE INSTR PCL INSTR
Alpha
21164 21164 C1 11 21164 C1 12 21164 C0 15

21264 AL264 0 1
MIPS
R10k R10k C1 2 R10k C1 3 R10k C0 15,R10k C1 16

R12k R12k 18 R12k 19 R12k 18+R12k 197 R12 15
SPARC
Ultra I/II ULTRA C0 1
Ultra III ULTRA3 C0 1,ULTRA3 C1 1
PowerPC
PPC604 PPC604 C1 18 PPC604 C0 2, PPC604 C1 2
PPC604e PPC604e C1 18 PPC604e C0 2, PPC604e C1 2, PPC604e C2 2, PPC604e C3 2
POWER3 POWER3 C0 4,POWER3 C3 5 POWER3 C2 9 POWER3 C3 5+POWER3 C2 9 POWER3 C0 1,POWER3 C1 0,POWER3 C2 2,POWER3 C3 2
POWER3-II POWER3II C0 4,POWER3II C3 5 POWER3II C2 9 POWER3II C3 5+POWER3II C2 9 POWER3II C0 1,POWER3II C1 0,POWER3II C2 2,POWER3II C3 2
Intel
Pentium MMX Pentium 36 Pentium 20
Pro,PII,PIII PPro 0 PPro 44
Pentium 4 P4 CG4 12 P4 CG4 12 P4 CG4 12 P4 CG4 18, 19
AMD
Athlon ATHLON 28
Hitachi
SR8000 SR8000 C4 SR8000 C5

Table
3.10:

Instructions
(1)

15

processor PCL JUMP SUCCESS PCL JUMP UNSUCCESS PCL JUMP
Alpha
21164 21164 C2 2
21264 21264 C1 1
MIPS
R10k R10k C0 6-R10k C1 8 R10k C1 8 R10k C0 6
R12k R12k 6-R12k 24 R12k 24 R12k 6
SPARC
Ultra I/II
Ultra III ULTRA3 C0 21+ULTRA3 C1 29 ULTRA3 C0 22
PowerPC
PPC604 PPC604 C1 8-PPC604 C0 7 PPC604 C0 7 PPC604 C1 8
PPC604e PPC604e C1 8-PPC604e C0 7 PPC604e C0 7 PPC604e C1 8
POWER3 POWER3 C1 8 POWER3 C3 22-POWER3 C1 8 POWER3 C3 22
POWER3-II POWER3II C1 8 POWER3II C3 22-POWER3II C1 8 POWER3II C3 22
Intel
Pentium MMX Pentium 48 Penntium 16-Pentium 49 Pentium 16
Pro,PII,PIII PPro 52 PPro 51 PPro 50
Pentium 4 P4 CG4 2 P4 CG4 4 P4 CG4 4+P4 CG4 0, 2
AMD
Athlon ATHLON 32 ATHLON 31 ATHLON 35
Hitachi
SR8000

Table
3.11:

B
ranch

instructions

processor PCL ATOMIC SUCCESS PCL ATOMIC UNSUCCESS PCL ATOMIC
Alpha
21164 21164 C2 13
21264
MIPS
R10k R10k C1 4-R10k C0 5 R10k C0 5 R10k C1 4
R12k R12k 20-R12k 5 R12k 5 R12k 20
SPARC
Ultra I/II
Ultra III
PowerPC
PPC604 PPC604 C1 9
PPC604e PPC604e C1 9
POWER3 POWER3 C1 13
POWER3-II POWER3II C1 13
Intel
Pentium MMX
Pro,PII,PIII
Pentium 4
AMD
Athlon
Hitachi
SR8000

Table
3.12:

A
tom

ic
instructions

16

processor PCL STALL INTEGER PCL STALL FP PCL STALL JUMP PCL STALL LOAD PCL STALL STORE PCL STALL
Alpha
21164
21264
MIPS
R10k
R12k
SPARC
Ultra I/II
Ultra III ULTRA3 C0 5
PowerPC
PPC604
PPC604e PPC604e C2 19 PPC604e C2 12
POWER3
POWER3-II
Intel
Pentium MMX Pentium C0 510 Pentium 24 Pentium 23
Pro,PII,PIII PPro 58
Pentium 4
AMD
Athlon ATHLON 49
Hitachi
SR8000

Table
3.13:

B
locked

units

17

processor PCL MFLOPS PCL IPC PCL L1DCACHE MISSRATE PCL L2DCACHE MISSRATE PCL MEM FP RATIO
Alpha
21164 21164 C1 10/21164 C2 11*Mhz 21164 C0 1/21164 C2 11 21164 C2 5/21164 C1 14 21164 C2 14/21164 C1 1511

21264
MIPS
R10k R10k C1 5/R10k C0 0*Mhz R10k C0 15/R10k C1 0
R12k R12k 21/R12k 0*Mhz
SPARC
Ultra I/II ULTRA C0 1/ULTRA C1 0 ULTRA C1 9/ULTRA C0 11
Ultra III (ULTRA C0 24+ULTRA C1 39)/MHz ULTRA C0 1/ULTRA C1 1 ULTRA C1 12/ULTRA C0 12
PowerPC
PPC604 PPC604 C0 15/PPC604 C1 1*Mhz PPC604 C0 2/PPC604 C1 1
PPC604e PPC604e C0 15/PPC604e C1 1*Mhz PPC604e C0 2/PPC604e C1 1
POWER3 POWER3 C1 35/POWER3 C4 5*Mhz POWER3 C0 1/POWER3 C1 1
POWER3-II POWER3II C1 35/POWER3II C4 5*Mhz POWER3II C0 1/POWER3II C1 1
Intel
Pentium MMX Pentium 30/Pentium C0 4*Mhz Pentium 20/Pentium C0 4 Pentium 37/Pentium 36 Pentium 36/Pentium 30
Pro,PII,PIII PPro C0 0/PPro 61*Mhz PPro 44/PPro 61 PPro 1/PPro 0 P4 CG4 12/P4 CG4 14
Pentium 4 P4 CG4 14/P4 CYCLES*MHz P4 CG4 18, 19/P4 CYCLES P4 CG1 13/P4 CG1 10,11,12,13
AMD
Athlon ATHLON 28/ATHLON 15 ATHLON 3/ATHLON 2
Hitachi
SR8000

Table
3.14:

R
ates

and
R

atios

18

3.2 Interface Functions

The interface functions to control the performance counters are given below. All functions are callable from
C, C++, Fortran, and Java. All functions return status codes with the following meaning:

PCL SUCCESS function successful finished

PCL NOT SUPPORTED requested event is not supported on this hardware

PCL TOO MANY EVENTS more events requested than performance counters are available

PCL TOO MANY NESTINGS there are more nested calls than allowed (PCL MAX NESTING LEVEL
)

PCL TOO ILL NESTING either a different number or different types of events are requested in nested
calls

PCL ILL EVENT event identifier illegal

PCL MODE NOT SUPPORTED performance counting for that mode is not supported

PCL FAILURE failure for some unspecified reason

Every PCL call needs a handle (denoted by descr) to work in a multi-threaded environment. Such a handle
needs to be allocated once with a call to PCLinit before any other PCL function is called. A handle should
be deallocated with PCLexit after all PCL functions were called.

3.2.1 High-Level Interface

The high-level interface is the usual interface as it allows a portable access to performance counters.

PCLinit

Allocates a thread-specific descriptor which must be passed to all subsequent PCL calls. The address of a
descriptor must be passed.

int PCLinit(
PCL_DESCR_TYPE* addr_descr /* I/O: addr of handle */

);

PCLexit

Releases the thread-specific descriptor.

int PCLexit(
PCL_DESCR_TYPE & descr /* I: handle */

);

PCLquery

With this function, queries are done if a certain functionality is available on this machine. The user sup-
plies in counter list an array of size ncounter of event names (of type integers). Event names are any of
those introduced in the tables 3.1 to 3.13 in the last section. In mode, the user specifies the execution
mode for which performance data should be gathered: PCL MODE USER specifies counting in user mode,
PCL MODE SYSTEM specifies counting in system mode, and PCL MODE USER SYSTEM specifies ei-
ther of both modes. The function returns PCL SUCCESS if the requested functionality is possible (i.e. if
the requested events can be counted in parallel), otherwise an error code is returned why the requested
events are not supported on this system. No resources are allocated on this call.

int PCLquery(
PCL_DESCR_TYPE & descr, /* I: handle */
int *counter_list, /* I: requested event counters */
int ncounter, /* I: number of counters */
unsigned int mode /* I: mode flags (PCL_MODE_xxx) */

);

19

PCLstart

With PCLstart, performance counting is started (if it is possible). The user supplies in counter list an array
of size ncounter of event names. Event names are any of those introduced in the tables 3.1 to 3.13 in the
last section. mode has the same meaning as in the description of PCLquery. If the requested functionality
is available, the appropriate performance counters are cleared and started. On success, PCL SUCCESS is
returned, otherwise an error code is returned.

int PCLstart(
PCL_DESCR_TYPE descr, /* I: handle */
int *counter_list, /* I: events to be counted */
int ncounter, /* I: number of counters */
unsigned int mode /* I: mode flags (PCL_MODE_xxx) */

);

PCLread

Reads out performance counters and returns counter values. Each of the the result values is either written
into the (user supplied) integer-typed buffer i results list or into the (user supplied) floating point typed
buffer fp results list both of size ncounter. PCL CNT TYPE is a 64-bit integer type, PCL FP CNT TYPE
is a 64-bit floating point type. Which of the buffers is used for the i-th result depends on the requested i-th
event type. If the i-th event type is less than PCL MFLOPS, the result is an integer value which is stored in
i results list[i]. If the i-th event type is greater than or equal to PCL MFLOPS (i.e. belongs to the category
rates and ratios), the result is a floating point value stored in fp results list[i]. If the i-th result is stored in
i results list[i], the content of fp results list[i] is undefined, and the same holds for the other way.
The arguments supplied with the call to PCLread must correspond to the latest call to PCLstart, i.e. the
number of requested performance counters must be equal. If no error occurs, PCL SUCCESS is returned,
otherwise an error code. The performance counters are (logically) not stopped.

int PCLread(
PCL_DESCR_TYPE descr, /* I: handle */
PCL_CNT_TYPE *i_result_list, /* O: int counter values */
PCL_FP_CNT_TYPE * fp_result_list, /* O: fp counter values */
int ncounter /* I: number of events */
);

PCLstop

Stops performance counting and returns counter values. Result values are written into the (user supplied)
buffers i result list or fp result list both of size ncounter. See PCLread for a description how the results
are stored in the two arrays. The arguments supplied with the call to PCLstop must correspond to the latest
call to PCLstart, i.e. the number of requested performance counters must be equal. If no error occurs,
PCL SUCCESS is returned, otherwise an error code.

int PCLstop(
PCL_DESCR_TYPE descr, /* I: handle */
PCL_CNT_TYPE *i_result_list, /* O: int counter values */
PCL_FP_CNT_TYPE * fp_result_list, /* O: fp counter values */
int ncounter /* I: number of events */

);

3.2.2 Low-Level Interface

The low-level interface should only be used in rare circumstances. It allows a direct access to hardware
performance counters in a uniform way. The user has to be aware of events and events codings for the
processor in use. This is different to the high-level interface where an abstract layer exists which hides all
low-level and non-portable details. The low-level interface is only accessible from C/C++.
The low-level interface was introduced in version 2.0 and feedback on its design and usage is welcome.
The interface may change in the future.
Before using any of the driver functions, a handle need to be allocated by a call to
PCLinit(PCL DESCR TYPE *descr). After using the driver routines, a call to PCLexit(PCL DESCR TYPE
descr) must be issued to release the handle.

20

PCL driver info

This function returns information on the processor in use. The function returns PCL SUCCESS if the
operation didn’t produce any error.

int PCL_driver_open(
PCL_PROCESSOR_INFO *info /* I: address of info struct */
);

The type PCL PROCESSOR INFO is a struct with at least the following components:

typedef struct
{

char *vendor; /* processor vendor */
char *family; /* processor family */
char *model; /* processor model */
int mhz; /* MHz rate */
int ncounters; /* number of counters (at least this number) */

} PCL_PROCESSOR_INFO;

PCL driver open

This function has to be called once and before any other driver call to open the hardware driver interface.
The function returns PCL SUCCESS if the operation could be successfully done.

int PCL_driver_open(
PCL_DESCR_TYPE descr /* I: handle */

);

PCL driver start

Starts performance counting. max counter specifies the maximum counter index (9
PCL COUNTER MAX). counter used mask is a bit field where the bits 0-max counter speciy which
counters should be started. E.g. if you want to measure counter 0,3, and 4 you may pass 4 or higher for
max counter and a bit field which has at bit position 0, 3, and 4 a 1 and otherwise a 0 (starting bit counting
with 0) . If no error occurs, PCL SUCCESS is returned, otherwise an error code.

int PCL_driver_start(
PCL_DESCR_TYPE descr /* I: handle */
int max_counter, /* I: max. counter index */
PCL_BIT_MASK_TYPE counter_used_mask, /* I: bit-field of counters to use */
PCL_DRIVER_COMMAND_TYPE *commands, /* I: event commands for counters */
unsigned int count_mode /* I: count mode */
);

PCL driver read

Reads out performance counters. The read values are returned in counter values, a user-supplied
buffer capable of storing max counter values. max counter specifies the maximum counter index (9
PCL COUNTER MAX). counter used mask gives in a bit field the hardware counters which should be
read. If no error occurs, PCL SUCCESS is returned, otherwise an error code.

int PCL_driver_read(
PCL_DESCR_TYPE descr /* I: handle */
int max_counter, /* I: max. counter index */
PCL_BIT_MASK_TYPE counter_used_mask, /* I: bit-field of counters to be read */
PCL_CNT_TYPE *counter_values /* I/O: buffer for results */
);

PCL driver stop

Stops performance counting. If no error occurs, PCL SUCCESS is returned, otherwise an error code.

int PCL_driver_stop(
PCL_DESCR_TYPE descr /* I: handle */
);

21

PCL driver close

Closes the driver and releases all allocated ressources. If no error occurs, PCL SUCCESS is returned,
otherwise an error code.

int PCL_driver_close(
PCL_DESCR_TYPE descr /* I: handle */

);

3.2.3 Useful Macros

There are two macros defined:

1. PCL EVENT IS INT(e) determines whether the result of an event e is of type integer (64 bits) or has
a floating point type (64 bits)

2. PCL EVENT IS RATE(e) determines whether the result for an event means and event count or an
event rate (counts may be added, adding rates makes less sense)

3.3 Programming Aspects

The allowed calling sequence is one call to PCLstart followed by zero or more calls to PCLread followed
by one call to PCLstop. Between a call to PCLstart and PCLstop (and possible calls to PCLread) may be
nested calls to other allowed calling sequences with the same number of events and the same event types.
On system with virtual (low level) performance counters, migrating a process to another processor is possi-
ble (SGI, AIX). On the other systems, we bind the executing process to a processor (DEC, SOLARIS)11, or
the process can not migrate (CRAY). On Solaris systems, if the process is not bound to a specific processor,
the process gets bound to the processor 0 when executing the PCLstart function. On DEC systems, the
process gets bound to the processor the process is currently running on. If you use pthreads on Solaris
systems, you must bind each thread to a processor.
Currently, performance counters are not saved on context switches on Linux systems by our library and
therefore performance measurements should be done only on a lightly loaded system.
Currently, we do not check if any other process uses the performance counters as well12. Therefore, on
certain systems if two distinct processes use performance counters in parallel, they may disturb each other.
To avoid overflow e.g. on systems with 32-bit hardware counters, an interval timer is called on these systems
(Solaris, AIX, Linux) which interrupts the process every second. Programs which use the setitimer system
call (or the SIGVTALRM signal), may be in conflict with PCL.

3.4 Supported Systems

Currently, the Performance Counter Library is available on the systems listed above:

� Alpha 21164 on Digital Unix 4.0x

� Alpha 21264 on Digital Unix :<; 4.0e

� Alpha 21164 on CRAY T3E Unicos/mk

� R10000,R12000 on SGI IRIX 6.x

� UltraSPARC I/II/III on Solaris 2.x and above

� PowerPC 604,604e,POWER3,POWER3-II in AIX :<; 4.3

� Pentium/PPro/Pentium II/Pentium III, Pentium 4 on Linux 2.x.x

� AMD Athlon

11On Linux systems, currently it is not possible to bind a process to a processor.
12This may be a program using the performance counters directly, or through a different application interface.

22

3.5 Examples

3.5.1 Simple Example

Below is a simple example program how to use the Performance Counter Library. First, the list of re-
quested events (PCL LOAD INSTR for load instructions, and PCL L1DCACHE MISS for 1st level data
cache misses) is put into the array counter list. With the call to PCLquery we test, if it is possible to serve
these two requested events simultaneously on the computer system where the program is executed. If this
is possible, event counting is started with the call to PCLstart. After that follows the code to be measured
and a call to PCLstop to stop performance counting and to read out the performance counter values. Then,
the results are printed.

#include <pcl.h>

void do_work(){}

int main(int argc, char **argv)
{

int counter_list[2];
int ncounter;
unsigned int mode;
PCL_CNT_TYPE i_result_list[2];
PCL_FP_CNT_TYPE fp_result_list[2];
PCL_DESCR_TYPE descr;

/* Allocate a handle */
if(PCLinit(&descr) != PCL_SUCCESS)

printf("cannot get handle\n");

/* Define what we want to measure. */
ncounter = 2;
counter_list[0] = PCL_CYCLES;
counter_list[1] = PCL_INSTR;

/* define count mode */
mode = PCL_MODE_USER;

/* Check if this is possible on the machine. */
if(PCLquery(descr, counter_list, ncounter, mode) != PCL_SUCCESS)

printf("requested events not possible\n");

/* Start performance counting.
We have checked already the requested functionality
with PCL_query, so no error check would be necessary. */

if(PCLstart(descr, counter_list, ncounter, mode) != PCL_SUCCESS)
printf("something went wrong\n");

/* Here comes the work to be measured. */
do_work();

/* Stop performance counting and get the counter values. */
if(PCLstop(descr, i_result_list, fp_result_list, ncounter) != PCL_SUCCESS)

printf("problems with stopping counters\n");

/* print out results */
printf("%f instructions in %f cycles\n",

(double)i_result_list[1], (double)i_result_list[0]);

/* Deallocate handle */
if(PCLexit(descr) != PCL_SUCCESS)

23

printf("cannot release handle\n");

return 0;
}

3.5.2 Example with Nested Calls

Below is an example how to use nested calls. In this example, for the outer loop as well as for each iteration
the number of cycles spent in this code section is measured.

#include <pcl.h>

#define NITER 4

void do_work(){}

int main(int argc, char **argv)
{

int counter_list[1];
int ncounter, res, iter;
unsigned int mode;
PCL_CNT_TYPE i_all_result_list, i_result_list[NITER];
PCL_FP_CNT_TYPE fp_all_result_list, fp_result_list[NITER];
PCL_DESCR_TYPE descr;

/* Allocate a handle */
if(PCLinit(&descr) != PCL_SUCCESS)

printf("cannot get handle\n");

/* Define what we want to measure. */
ncounter = 1;
counter_list[0] = PCL_CYCLES;

/* define count mode */
mode = PCL_MODE_USER;

/* Start performance counting. */
res = PCLstart(descr,counter_list, ncounter, mode);

for(iter = 0; iter < NITER; ++iter)
{

/* Start performance counting. */
res = PCLstart(descr, counter_list, ncounter, mode);

/* Here comes the work to be measured. */
do_work();

/* Stop performance counting and get counter values. */
res = PCLstop(descr, &i_result_list[iter], &fp_result_list[iter], ncounter);

}

/* Stop performance counting and get the counter values. */
res = PCLstop(descr, &i_all_result_list, &fp_all_result_list, ncounter);

/* print out results */
printf("used cycles: %f %f %f %f, total: %f\n",

(double)i_result_list[0], (double)i_result_list[1],
(double)i_result_list[2], (double)i_result_list[3],
(double)i_all_result_list);

24

/* Deallocate handle */
if(PCLexit(descr) != PCL_SUCCESS)

printf("cannot release handle\n");

return 0;
}

3.5.3 Example in Java

Below is an example how to use PCL in Java.

public class pcl_jtest {
static final int N = 200; // matrix dimension
static double[][] a = new double[N][N];
static double[][] b = new double[N][N];
static double[][] c = new double[N][N];

// test method
static void matadd(double[][] a, double[][] b, double[][] c) {

int i, j;
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

a[i][j] = b[i][j] + c[i][j];
}

// main program
public static void main(String[] args) {

int event;
long descr = 0; // descriptor
PCL pcl = new PCL(); // instantiate PCL
int mode = pcl.PCL_MODE_USER_SYSTEM; // count mode
int[] events = new int[1]; // events; array required
long[] i_result = new long[1]; // int results; array required
double[] fp_result = new double[1]; // fp results

if(pcl.PCLinit(descr) != pcl.PCL_SUCCESS)
System.out.println("problem with init");

// test supported events
for(event = 0; event < pcl.PCL_MAX_EVENT; ++event) {

events[0] = event;
if(pcl.PCLquery(descr, events, 1, mode) == pcl.PCL_SUCCESS) {

// start counting
if(pcl.PCLstart(descr, events,1,mode) != pcl.PCL_SUCCESS)

System.out.println("problem with starting event");

// test program
matadd(a,b,c);

// stop counting
if(pcl.PCLstop(descr,i_result,fp_result,1) != pcl.PCL_SUCCESS)

System.out.println("problem with stopping event");

// print result for event i
if(event < pcl.PCL_MFLOPS)

// integer result
System.out.println(pcl.PCLeventname(event)+":"+i_result[0]);

else
// floating point result
System.out.println(pcl.PCLeventname(event)+":"+fp_result[0]);

25

}
}

if(pcl.PCLexit(descr) != pcl.PCL_SUCCESS)
System.out.println("problem with exit");

}
}

3.5.4 Using the low-level Interface

Below is an example how to use low-level interface.

#include <pcl.h>

void do_work(){}

int main(int argc, char **argv)
{

int res, counter_index;
unsigned int count_mode;
PCL_DESCR_TYPE descr;
PCL_PROCESSOR_INFO info;
PCL_BIT_MASK_TYPE counter_used_mask;
PCL_DRIVER_COMMAND_TYPE commands[PCL_COUNTER_MAX];
PCL_CNT_TYPE counter_values[PCL_COUNTER_MAX];

/* Allocate a handle */
if(PCLinit(&descr) != PCL_SUCCESS)

printf("cannot get handle\n");

/* get processor info */
if((res = PCL_driver_info(&info)) != PCL_SUCCESS)
printf("error on PCL_driver_info (%d)\n", res);

else
{

printf("processor vendor : %s\n", info.vendor);
printf("processor family : %s\n", info.family);
printf("processor model : %s\n", info.model);
printf("processor speed : %d MHz\n", info.mhz);
printf("number of counters: >=%d\n", info.ncounters);

}

/* open driver */
if((res = PCL_driver_open(descr)) != PCL_SUCCESS)
printf("error on PCL_driver_open (%d)\n", res);

/* This is for a DEC Alpha 21164: count FP operations */
counter_index = 1;
commands[counter_index] = 0x0a;

counter_used_mask = (0x1 << counter_index);
count_mode = PCL_MODE_USER;
if((res = PCL_driver_start(descr, PCL_COUNTER_MAX, counter_used_mask,

commands, count_mode)) != PCL_SUCCESS)
printf("error on PCL_driver_start (%d)\n", res);

/* do some work */
do_work();

/* read counter */

26

if((res = PCL_driver_read(descr, PCL_COUNTER_MAX, counter_used_mask,
counter_values)) != PCL_SUCCESS)
printf("error on PCL_driver_read (%d)\n", res);

else
printf("%.0f floating point instructions\n",
(double)counter_values[counter_index]);

/* stop counting */
if((res = PCL_driver_stop(descr)) != PCL_SUCCESS)
printf("error on PCL_driver_stop (%d)\n", res);

/* close driver */
if((res = PCL_driver_close(descr)) != PCL_SUCCESS)
printf("error on PCL_driver_close (%d)\n", res);

/* deallocate handle */
if(PCLexit(descr) != PCL_SUCCESS)

printf("cannot release handle\n");

return 0;
}

27

Chapter 4

Related Projects

In the Parallel Tools Consortium there is a subproject defined called PAPI. Its main aspect is to define an
API to access all system specific hardware performance counters, i.e. to start/read out/stop all hardware
performance counters on a microprocessor with all events available on that system. This is a different
approach than ours as we focus on a single framework on all systems, i.e. a uniform application interface as
well as a well-defined set of events accessible with uniform names on all systems. For the PerfAPI project,
have a look at http://www.cs.utk.edu/ mucci/pdsa/.
There are a lot of interfaces to access performance counters on one specific system, e.g. libperfex on SGI
systems with the R10000-processor or the pfm-device on Digital Unix systems (21064 or 21164 processors).
To establish a common platform for performance counting on all POWER and PowerPC microprocessors,
IBM has defined an application interface called PMapi. Their approach is as well, to define the set of
possible events as the union of all possible events on all POWER and PowerPC microprocessors. On Linux
systems, libpperf supports all Pentium, PentiumPro, and Pentium II processors through a common interface.

28

Chapter 5

Summary

PCL – the Performance Counter Library – is a common interface for portable performance counting on
modern microprocessors. It is intended to be used by the expert application programmer who wishes to do
detailed analysis on program performance, and it is intended to be used by tool writers who need a common
platform to base their work on.
The application interface supports query for functionality, start and stop of performance counting and read-
ing out the values of the performance counters. Nested calls to the functions are possible (with the same
events) therefore allowing to do hierarchical performance measurements on sections and subsections of a
program. Further, performance counting in user mode, system, and user-or-system mode can be distin-
guished. Language bindings are available for C, C++, Fortran, and Java.
PCL is available at

http://www2.inf.fh-bonn-rhein-sieg.de/ � rberre2m/PCL/
and

http://www.fz-juelich.de/zam/PCL/
.

29

Chapter 6

Acknowledgments

We would like to thank those hardware vendors who supported us with detailled information on performance
counters, access to test systems, and/or test hardware. Namely Cray, Hitachi, IBM, Intel, and SGI.
Additionally, we would like to thank those people who have written software we based our work on. For
the current PCL version this is perfctr from Mikael Pettersson.
For older PCL versions, we would like to thank Richard Enbody for perfmon on UltraSPARC-systems, and
M. Patrick Goda and Michael S. Warren for libpperf which itself is based on the msr device implemented
by Stephan Meyer on Linux version 2.0.x, 2.1.x, and 2.2.x.

30

Bibliography

[1] Kirk W. Cameron and Yong Luo. Performance evaluation using hardware performance counters.
http://www.c3.lanl.gov/ kirk/isca99/.

[2] Digital Equipment Corporation, Maynard, Massachusetts. man 7 pfm.

[3] Digital Equipment Corporation, Maynard, Massachusetts. Alpha AXP Architecture Handbook, version
2 edition, 1994.

[4] Silicon Graphics Inc. man libperfex.

[5] MIPS Technologies Inc., Mountain View, California. Definition of MIPS R12000 Performance-
counter.

[6] Marco Zagha and et.al. Performance Analysis using the MIPS R10000 Performance Counters. In
Supercomputing 96. IEEE Computer Society, 1996.

[7] Sun Microsystems, Palo Alto, California. UtraSPARC User’s Manual, 1997.

[8] SPARC International, Inc. The SPARC Architecture Manual, Version 9, 1997.

[9] Motorala Inc., IBM. The PowerPC Family : The Bus Interface for 32-Bit Microprocessors, 3 1997.

[10] James E. Smith Shlomo Weiss. POWER and PowerPC. Morgan Kaufmann Publishers, Inc., 1994.

[11] Motorola Inc., IBM. PowerPC 604e RISC Microprocessor User’s Manual, 3 1998.

[12] http://developer.intel.com/drg/mmx/AppNotes/perfmon.htm.

[13] Intel Corp. Pentium Pro Family Developers Manual 1-3, 1997.

[14] Intel. Intel IA-64 Architecture Software Developer’s Manual, volume 4. January 2000.

31

Appendix A

Performance Counters on
Microprocessors

This chapter introduces performance counting aspects of commonly used microprocessors. Each section
introduces a microprocessor family and is divided into three subsections: base information on the micro-
processor, performance counter events sorted by each performance counter, and in the third subsection
additional comments and references to existing implementations to access the performance counters on that
specific microprocessor. The second part of each section, the description of the performance counters and
their events, is given for each event as follows. The first line contains an event identifier which is composed
of the name of the microprocessor (e.g. 21164 for the Alpha 21164), the number of the performance counter
(e.g. C0 for counter 0), and a number giving the event number. We will refer to the whole name as a unique
identifier in all chapters. The next line contains a manufacturer-specific name or definition (in italics) of the
event as found in the manufacturer’s literature. After that, a description of the event follows.

32

A.1 DEC Alpha

To use performance counters on DEC Alpha microprocessors, additional software support is necessary as
the low-level interface is given in PAL-Code. Tru64 (formely Digital Unix) has the pseudo device pfm [2]
which has a high-level interface based on ioctl-calls to access the performance counters. The pfm-device on
systems distinguishes between user and system mode event counting. Only one process per CPU can open
the device, but child processes can be spawned which influence the performance counters as well.
On the CRAY T3E, which uses the 21164 microprocessor too, there is no software interface published to
access the performance counters.

A.1.1 DEC Alpha 21164

The RISC-processor DEC Alpha 21164 has 3 performance counters. First, let’s have a closer look at the
architecture of the microprocessor. The first level of caches contain an instruction (ICACHE) and a data
cache (DCACHE), each having a size of 8 KB. The second level cache (SCACHE) has a size of 96 KB
buffering instructions and data. An additional option is an external third level cache (BCACHE). A detailed
description of the Alpha architecture can be found in [3].
The 21164 contains pipelines of the following types:

� 7-stage integer pipelines

� 9-stage floating point pipelines

� 13-stage memory reference pipeline

The performance counter part on the DEC Alpha 21164 contains 3 counters with distinct purposes. Roughly
speaking, counter 0 counts machine cycles or issued instructions, counter 1 counts successful operations,
and counter 2 counts unsuccessful operations. For the counters, 2, 24, and 23 different events are defined,
respectively, and the counters can operate in parallel. There is one restriction that when counting certain
events on counter 2, counter 1 gathers special events. The counters are 16 bit (counter 0,1) and 14 bit
(counter 2) wide. The cycle counter is 64 bit wide, but only the lower 32 bits contain cycle values, the
upper 32 bit are OS specific.
Events countable on the DEC Alpha 21164 are:

� Processor Cycle Counter:

– 21164 PCC
elapsed machine cycles

� Counter 0:

– 21164 C0 0
CYCLES
machine cycles

– 21164 C0 1
ISSUES
issued instructions

� Counter 1:

– 21164 C1 0
NON ISSUE CYCLES
Either no instructions have been issued to the pipeline in the number of cycles, or the pipeline
has been stalled for that number of cycles.

– 21164 C1 1
SPLIT ISSUE CYCLES
Not all startable instructions have been included into the instruction pipeline.

– 21164 C1 2
PIPELINE DRY
A parallel execution of instructions was not possible.

– 21164 C1 3
REPLAY TRAP
If a started instruction could not be further processed, the instruction is issued again in the
instruction pipeline, which is called a replay trap.

33

– 21164 C1 4
SINGLE ISSUE CYCLES
Exactly 1 instruction was issued in a cycle.

– 21164 C1 5
DUAL ISSUE CYCLES
Exactly 2 instructions were issued in a cycle.

– 21164 C1 6
TRIPLE ISSUE CYCLES
Exactly 3 instructions were issued in a cycle.

– 21164 C1 7
QUAD ISSUE CYCLES
Exactly 4 instructions were issued in a cycle.

– 21164 C1 8
FLOW CHANGE
A jump instruction was executed. Conditional and unconditional jumps are distinguished.

Remark:
= If counter 3 counts branch-mispredictions, then branches are counted.
= If counter 3 counts pc-mispredictions, then jsr (subroutine calls, returns) are counted.

– 21164 C1 9
INTEGER OPERATE
Executed operations in the integer pipelines.

– 21164 C1 10
FP INSTRUCTIONS
Executed operations in the floating point pipelines.

– 21164 C1 11
LOAD INSTRUCTIONS
Executed load instructions.

– 21164 C1 12
STORE INSTRUCTIONS
Executes store instructions.

– 21164 C1 13
ICACHE ACCESS
Accesses to the 1st level instruction cache (ICACHE).

– 21164 C1 14
DCACHE ACCESS
Accesses to the 1st level data cache (DCACHE).

– 21164 C1 15-21164 C1 21
”CBOX1”
Accesses to 2nd or 3rd level cache. There need to be defined additional options [3]:
= 21164 C1 15

SCACHE ACCESS
Accesses to 2nd level cache (SCACHE).

= 21164 C1 16
SCACHE READ
Read accesses to 2nd level cache (SCACHE).

= 21164 C1 17
SCACHE WRITE
Write accesses to 2nd level cache (SCACHE).

= 21164 C1 18
SCACHE VICTIM
Number of non-completed memory frees in 2nd level cache (SCACHE).

= 21164 C1 19
BCACHE HIT
Hits in 3rd level cache (BCACHE).

34

= 21164 C1 20
BCACHE VICTIM
Number of non-completed memory frees in 3rd level cache (SCACHE).

= 21164 C1 21
SYS REQ
Requests of additional hardware (multiprocessor system).

� Counter 2:

– 21164 C2 0
LONG STALLS
Number of events that instruction pipeline was blocked for more than 12 cycles.

– 21164 C2 1
PC MISPR
Program counter mispredictions.

– 21164 C2 2
BRANCH MISPREDICTS
Branch mispredictions.

– 21164 C2 3
ICACHE MISSES
Misses in the 1st level instruction cache (ICACHE).

– 21164 C2 4
ITB MISSES
Misses in instruction TLB.

– 21164 C2 5
DCACHE MISSES
Misses in 1nd level data cache (DCACHE).

– 21164 C2 6
DTB MISS
Misses in data TLB.

– 21164 C2 7
LOADS MERGED
An entry in the Miss-Address-File corresponds to a memory request.

– 21164 C2 8
LDU REPLAYS
A replay trap was triggered by a missed load operation.

– 21164 C2 9
WB MAF FULL REPLAYS
A replay trap was triggered by a missed write-back operation or by an inconsistency in the
miss-address-file.

– 21164 C2 10
EXTERNAL
A signal change at the pin ”perf mon h” occurred.

– 21164 C2 11
CYCLES
Number of cycles.

– 21164 C2 12
MEM BARRIER
Executed memory barrier instructions.

– 21164 C2 13
LOAD LOCKED
A locked load instruction was executed.

– 21164 C2 14-21164 C2 21
”CBOX2”
Accesses to 2nd or 3rd level cache. There need to be defined additional options [3]:

35

= 21164 C2 14
SCACHE MISS
Misses on 2nd level cache.

= 21164 C2 15
SCACHE READ MISS
Read misses on 2nd level cache.

= 21164 C2 16
SCACHE WRITE MISS
Write misses on 2nd level cache.

= 21164 C2 17
SCACHE SH WRITE
Number of write-operations which go to caches other than the processor-specific 2nd level
cache.

= 21164 C2 18
SCACHE WRITE
Write accesses to 2nd level cache.

= 21164 C2 19
BCACHE MISS
Misses in 3rd level cache.

= 21164 C2 20
SYS INV
Requests of additional hardware to invalidate a cache line (multiprocessor).

= 21164 C2 21
SYS READ REQ
Requests of additional hardware to read-copy a cache line (multiprocessor).

A.1.2 DEC Alpha 21264

The DEC Alpha 21264 is a four-way out-of-order-issue microprocessor that performs dynamic scheduling,
register renaming, and speculative execution. There are 4 integer execution units and 2 floating-point exe-
cution units. The processor includes a 64 KB 1st level instruction cache and a 64 KB 1st level data cache.
The 21264 has 2 performance counters of 20 bit width each. Counters 0 is capable of counting one of 2
different events, and counter 1 is capable of counting one of 7 different events. Therefore, the ability to do
a detailled performance analysis on the 21264 is significantly reduced compared to the 21164.
Events countable on the DEC Alpha 21264 are:

� Processor Cycle Counter:

– 21264 PCC
elapsed machine cycles

� Counter 0:

– AL264 0 0
machine cycles

– AL264 0 1
retired instructions

� Counter 1:

– 21264 C1 0
machine cycles

– 21264 C1 1
retired conditional branches

– 21264 C1 2
retired branch mispredicts

– 21264 C1 3
retired DTB single misses * 2

– 21264 C1 4
retired DTB double double misses

36

– 21264 C1 5
retired ITB misses

– 21264 C1 6
retired unaligned traps

– 21264 C1 7
replay traps

37

A.2 MIPS Family

The microprocessors R10000 and R12000 of MIPS are 64 Bit RISC-microprocessors with integrated per-
formance counters.
Software support for the performance counters on R10000 processors is available either on a lower level
in IRIX 6.x through the /proc file system or on a higher level through the perfex library [4]. The kernel
maintains data structures for 32 virtual performance counters with a size of 64 bits each. It is possible to
distinguish between counting in user mode, system mode, or both. When running in user mode, perfor-
mance counters are saved on context switches. For the perfex library, the routine start counters zeroes out
the internal counters, and read counters stops the counters after reading them.

A.2.1 R10000

The R10000 processor has 64 physical registers and 32 logical registers. The 1st level cache is split between
a data cache and an instruction cache, both of size 32 KB. The 2nd level cache can be between 512 KB and
16 MB and the cache is a unified buffer at it caches data as well as instructions. The main memory can be
up to 1 TB.
The R10000 microprocessor has 2 performance counters (a description can be found at
http://www.sgi.com/processors/r10k/performance.html) each capable of counting one of 16 different
events. The hardware counters are 32 bit wide. The R10000 has 5 execution pipelines executing decoded
instructions. There are 2 integer pipelines (ALU1, ALU2), 2 floating point pipelines (FPU1, FPU2), and
1 address pipeline (LOAD/STORE). The integer and floating point pipelines can operate in parallel. For a
better understanding we define the two following terms:

� issued: An instruction was decoded and supplied to the executing unit.

� graduated: An execution of an instruction has finished and all instruction issued before the instruction
have finished, too.

Another term to be defined is SCTP-Logic which is the Secondary Cache Transaction Processing Logic,
which has the task to store up to 4 internally generated or 1 externally generated 2nd level cache transactions.

� Counter 0:

– R10k C0 0
Cycles
Machine cycles.

– R10k C0 1
Instructions issued
The counter is incremented with the sum of the following events:
= integer operations completed at this cycle. There can be 0-2 operations each cycle.
= floating-point-operations completed at this cycle. There can be 0-2 operations each cycle.
= load/store operations which have been delivered in the last cycle to the address pipeline.

There can be 0 or 1 each cycle.

– R10k C0 2
Load/prefetch/sync/CacheOp issued
Each of these instructions is counted when started.

– R10k C0 3
Stores(including store-conditional) issued
Each time a store operations is delivered to the address calculation unit, the counter is incre-
mented.

– R10k C0 4
Store conditional issued
Each time a conditional store operations is delivered to the address calculation unit, the counter
is incremented.

– R10k C0 5
Failed store conditional
The counter is incremented each time a conditional store failed.

38

– R10k C0 6
Conditional Branch resolved
Count all resolved conditional branches.

– R10k C0 7
Quadwords written back from secondary cache
Counter is incremented each time a quad-word is written from the 2nd level cache to the output
buffer.

– R10k C0 8
Correctable ECC errors on secondary cache data
A correctable 1-bit ECC error occurred while reading a quadword from the 2nd level cache.

– R10k C0 9
Instruction cache misses
Misses in the instruction cache.

– R10k C0 10
Secondary cache misses (instruction)
Instruction misses in the 2nd level cache.

– R10k C0 11
Secondary cache way mispredicted (instruction)
An attempt was made to load an instruction from the 2nd level cache and the entry is marked as
invalid.

– R10k C0 12
External intervention requests
Number of requests to the SCTP-Logic from outside of the processor (I/O devices, multiproces-
sor etc.) for a copy of a cache line marked as shared.

– R10k C0 13
External invalidate requests
Number of requests to the SCTP-Logic from outside of the processor (I/O devices, multiproces-
sor etc.) for invalidation of a cache line marked.

– R10k C0 14
Functional unit completion cycles
The counter is incremented if at least one of the functional units has completed an operations in
this cycle.

– R10k C0 15
Instruction graduated
The counter is incremented with the number of instructions which have been completed in the
last cycle. An integer multiplication or division increments the counter by 2.

� Counter 1:

– R10k C1 0
Cycles
Machine cycles.

– R10k C1 1
Instructions graduated
The counter is incremented by the number of instructions which have been completed in the last
cycle. An integer multiplication and division increments by 2.

– R10k C1 2
Load/prefetch/sync/CacheOp graduated
Every completed instruction of this type is counted.

– R10k C1 3
Stores (including store-conditionals) graduated
Every completed store operation is counted.

– R10k C1 4
Store conditionals graduated
Every conditional store is counted independently of success. This is possible at most once a
cycle.

39

– R10k C1 5
Floating-point instructions graduated
Floating point instructions completed in the last cycle (0-4 each cycle).

– R10k C1 6
Quadwords written back from primary cache
The counter is incremented by 1, if in a cycle at least one quadword is written back from the 1st
level cache to the 2nd level cache.

– R10k C1 7
TLB refill exceptions
TLB misses are counted in the cycle after they occur.

– R10k C1 8
Branches mispredicted
The counter is incremented on every mispredicted branch.

– R10k C1 9
Primary data cache misses
Miss in the primary data cache.

– R10k C1 10
Secondary cache misses (data)
Miss in the secondary cache caused by a data access.

– R10k C1 11
Secondary cache way mispredicted (data)
The counter is incremented if the 2nd level cache controller tries to access the 2nd level cache
after a previous access failed.

– R10k C1 12
External intervention request is determined to have hit in secondary cache
The processor got an external request for a copy of a 2nd level cache block.

– R10k C1 13
External invalidate request is determined to have hit in secondary cache
The processor got an external request to invalidate a 2nd level cache block.

– R10k C1 14
Stores/prefetches with store hint to CleanExklusive secondary cache blocks
The SCTP-logic got a request for status change of a cache line from CleanExclusive to DirtyExk-
lusive.

– R10k C1 15
Stores/prefetches with store hint to Shared secondary cache blocks
The status of a cache line was changed from Shared to DirtyExklusive.

A.2.2 R12000

Different to the R10000, the R12000 has 4 counters each capable of counting one of 32 events. For counter
1, a trigger mechanism was included such that an event is counted by counter 1 if any of the other counters
reached a certain value. Additionally, conditional counting is possible. For example, it is possible to count
the number of cycles in which 4 instructions have been completed. Also, some semantic inaccuracies con-
cerning the definition of events have been clarified [5]. An introduction to measurement and interpretation
of events can be found in [6]. The counters are 32 bit wide.
The 4 counters may count any of the 32 events:

� R12k 0
Cycles
Machine cycles.

� R12k 1
Decoded instructions
Incremented by the total number of instructions decoded on the previous cycle.

� R12k 2
Decoded loads
Incremented when a load instruction was decoded on the previous cycle. Prefetch, cache operations,
and synchronization instructions are not included.

40

� R12k 3
Decoded stores
Incremented if a store instruction was decoded on the previous cycle. Store conditionals are not
included.

� R12k 4
Mishandling table occupancy
Incremented each cycle by the number of currently valid entries in the Miss Handling Table (MHT).

� R12k 5
Failed store conditionals
Incremented when a store-conditional instruction fails.

� R12k 6
Resolved condition branches
Incremented both when a branch is determined to have been mispredicted and when a branch is
determined to have been correctly predicted.

� R12k 7
Quadwords written back from secondary cache
Counter is incremented each cycle a quad-word is written from the 2nd level cache to the system
interface unit.

� R12k 8
Correctable secondary cache data array ECC errors
Incremented each cycle following the correction of a 1-bit ECC error when reading a quadword from
the 2nd level cache.

� R12k 9
Primary instruction cache misses
Misses in the instruction cache.

� R12k 10
Secondary instruction cache misses
Instruction misses in the 2nd level cache.

� R12k 11
Instruction misprediction from secondary cache way prediction table
Incremented when the secondary cache control begins to retry an access because it hit in the unpre-
dicted way, provided the access that initiated the access was an instruction fetch.

� R12k 12
External interventions
Incremented on the cycle after an intervention is entered into the Miss Handling Table, provided that
the intervention is not an invalidated type.

� R12k 13
External invalidations
Incremented on the cycle after an intervention is entered into the Miss Handling Table, provided that
the intervention is an invalidated type.

� R12k 14
ALU/FPU progress cycles
Incremented on the cycle after either ALU1, ALU2, FPU1, or FPU2 amrks an instruction as done.

� R12k 15
Graduated instructions
The counter is incremented with the number of instructions which have been completed in the last
cycle. An integer multiplication or division increments the counter by 2.

� R12k 16
Executed prefetch instruction
Incremented on the cycle after a prefetch instruction does its tag-check, regardless of whether a data
cache line refill is initiated.

41

� R12k 17
Prefetch primary data cache misses
Incremented on the cycle after a prefetch instruction does its tag-check and a refill of the correspond-
ing data cache line is initiated.

� R12k 18
Graduated Loads
Incremented by the number of loads that graduated on the previous cycle. Prefetch instructions are
included in this count. Up to four loads can graduate in one cycle.

� R12k 19
Graduated Stores
Incremented on the cycle after a store graduates. Only one store can graduate pre cycle. Store
conditionals are included in this count.

� R12k 20
Graduated store conditions
Incremented on the cycle following the graduation of a store-conditional instruction. Both failed and
successful store-conditional instructions are included in this count. So successful store-conditionals
can be determined as the difference between this event and event R12k 5.

� R12k 21
Graduated floating-point instructions
Incremenetd by the number of floatig-point instructions that graduated on the previous cycle. There
can be 0 to 4 such instructions.

� R12k 22
Quadwords written back from primary data cache
Incremented on each cycle that a quadword of data is valid and is written from primary data cache to
secondary cache.

� R12k 23
TLB misses
Incremented on the cycle after the TLB miss handler is invoked.

� R12k 24
Mispredicted branches
Incremented on the cycle after a branch is restored because it was mispredicted.

� R12k 25
Primary data cache misses
Incremented one cycle after a request is entered into the SCTP logic, provided that the request was
initially targeted at the primary data cache. Such requests fall into three categories: primary data
cache misses, requests to change the state of secondary and primary data cache lines from clean
to dirty due to stores that hit a clen line in the primary data cache, and requests initiated by cache
instructions.

� R12k 26
Secondary data cache misses
Incremented the cycle after a refill request is sent to the system interface module of the CPU.

� R12k 27
Data mispredictions from secondary cache way prediction table
Incremented when the secondary cache control begins to retry an access because it hit in th eunpre-
dicted way. The counter is incremented only if access that initiated the access was not an instruction
fetch.

� R12k 28
State of external intervention hits in secondary cache
Set on the cycle after an external intervention is determined to have hit in the secondary cache. The
value of the event is equal to the state of the secondary cache line that was hit. Setting a performance
control register to select this event has a special effect on the conditional counting behavour.

42

� R12k 29
State of invalidation hits in secondary cache (L2)
Set on the cycle after an external invalidate request is determined to have hit in secondary cache. Its
value is equivalent to that dscribed for event R12k 28.

� R12k 30
Miss Handling Table entries accessing memory
Incremented on each cycle by the number of entries in the Miss Handling Table waiting for a memory
operation to complete.

� R12k 31
Store/prefetch exclusive to shared block in secondary cache (L2)
Incremented on the cycle after an update request is issued for a line in the secondary cache. If the line
is in the clean state, the counter is incremented by one. If the line is in the shared state, the counter is
incremented by two. The conditional counting mechanism can be used to select whether one, both,
or neither of these events is chosen.

43

A.3 SUN ULTRASparc

Performance registers of UltraSPARC processors are controlled by the Performance Control Register (PCR)
which can be accessed only in privileged mode. Accesses to the PIC-registers may be either in user or
privileged mode, dependent on a bit in the PCR which can be changed in privileged mode. Event counting
can be done either for the user mode, system mode, or both. Overflow of the counters is silently. For
accurate timing, event counting should be done as taking the difference between two reads of a performance
counter.
Actual versions of the Solaris operating system have support for performance counters in form of a pro-
gramming interface (see man cpc).

A.3.1 UltraSPARC I/II

The UltraSPARC I/II 64-bit microprocessors of SUN have the possibility to count performance relevant
events. A detailed description of the SPARC V9 architecture can be found in [7]. Both variants have
8 times 24 64-bit registers which are organized in so-called windows to optimize argument passing on
subroutine calls without time-consuming copying of registers to memory. The 1st level cache has a 16 KB
data (D-cache) and a 16 KB instruction cache (I-Cache). The 2nd level cache (E-cache) has a size of 512
KB up to 4 MB on UltraSPARC I, and 512 KB up to 16 MB on UltraSPARC II. The main memory can
be as large as 2 TB. Another important component of the supporting logic is the UPA, the Universal Port
Architecture, which connects several processors over a high-speed crossbar-switch.
The microprocessor contains two performance counters (PIC0, PIC1), which are able to count different
events. Each counter can count one of 12 different events, two events can be counted on both counters,
which sums up to a total of 22 different events [8]. The counters are 32 bit wide. Additionally, there exists
a 64-bit elapsed cycle counter.

� Tick Counter:

– ULTRA TC
elapsed machine cycles

� Counter PIC0:

– ULTRA C0 0
Cycle cnt
Machine cycles.

– ULTRA C0 1
Instr cnt
Instructions graduated.

– ULTRA C0 2
Dispatch0 IC miss
Number of cycles waiting after a miss in the 1st level instruction cache (including handling of a
follow-on E-cache miss).

– ULTRA C0 3
Dispatch0 storeBuf
Number of cycles a write buffer could not store new values (next instruction is a store instruc-
tion).

– ULTRA C0 4
IC ref
1st level instruction cache references.

– ULTRA C0 5
DC rd
1st level data cache read references.

– ULTRA C0 6
DC wr
1st level data cache write references.

– ULTRA C0 7
Load use
Number of cycles instructions are waiting on a previous load operation.

44

– ULTRA C0 8
EC ref
Number of 2nd level cache references.

– ULTRA C0 9
EC write hit RDO
Number of hits on 2nd level cache read accesses in a read for ownership-UPA-transaction.

– ULTRA C0 10
EC snoop inv
Number of cache line invalidations due to a UPA-transactions.

– ULTRA C0 11
EC rd hit
Number of E-cache read hits caused by 1st level data cache miss.

� Counter PIC1 counts:

– ULTRA C1 0
Cycle cnt
Machine cycles.

– ULTRA C1 1
Instr cnt
Instructions graduated.

– ULTRA C1 2
Dispatch0 mispred
Number of cycles waiting with an empty instruction buffer after a wrong branch prediction.

– ULTRA C1 3
Dispatch0 FP use
Number of cycles which waits the first instruction in a group because the result of a previous
floating-point operation is not available.

– ULTRA C1 4
IC hit
Number of 1st level instruction cache hits.

– ULTRA C1 5
DC rd hit
Number of 1st level data cache read hits.

– ULTRA C1 6
DC wr hit
Number of 1st level data cache write hits.

– ULTRA C1 7
Load use RAW
Number of cycles load operations spent in the instruction pipeline while at the same time a
read-write-inconsistency exists because of a not-completed load operation.

– ULTRA C1 8
EC hit
Number of 2nd level cache hits.

– ULTRA C1 9
EC wb
Number of 2nd level cache misses causing a write-back operation.

– ULTRA C1 10
EC snoop cb
Number of UPA-transactions which caused a copy-back of a 2nd level cache line.

– ULTRA C1 11
EC ic hit
Number of 2nd level cache read hits caused by a 1st level instruction cache miss.

There are hardware erratas documenting problems in counting certain events. These problems might
affect events of type PCL L2CACHE MISS, PCL L1DCACHE MISS, PCL L1ICACHE READWRITE,
PCL L1ICACHE HIT, PCL L1ICACHE MISS.

45

A.3.2 UltraSPARC III

The microprocessor contains two performance counters (PIC0, PIC1), each of them 32 bit wide. Addition-
ally, there exists a 64-bit elapsed cycle counter.

� Tick Counter:

– ULTRA3 TC
elapsed machine cycles

� Counter PIC0:

– ULTRA3 C0 0
Cycle cnt
Machine cycles.

– ULTRA3 C0 1
Instr cnt
Instructions completed.

– ULTRA3 C0 2
Dispatch0 IC miss
Number of cycles waiting after a miss in the 1st level instruction cache (including handling of a
follow-on E-cache miss).

– ULTRA3 C0 3
Dispatch0 br target
Number of cycles waiting caused by a branch target address calculation

– ULTRA3 C0 4
Dispatch0 2nd br
Number of cycles waiting caused by a refetch of a second branch

– ULTRA3 C0 5
RStall storeQ
Store queue full

– ULTRA3 C0 6
Rstall IU use
Number of stall because integer result is not available

– ULTRA3 C0 8
IC ref
Number of references to 1st level instruction cache

– ULTRA3 C0 9
DC rd
Number of reads from 1st level data cache

– ULTRA3 C0 10
DC wr
Number of writes to 1st level data cache

– ULTRA3 C0 12
EC ref
Number of 2nd level cache (E-cache) references

– ULTRA3 C0 13
EC write hit RTO
E-cache hits with read-to-own bus transaction

– ULTRA3 C0 14
EC snoop inv
Number of E-cache invalidations caused by an external snoop

– ULTRA3 C0 15
EC rd miss
Number of E-cache read misses caused by 1st level data cache requests

– ULTRA3 C0 16
PC port0 rd
Prefetch cache read references to 1st port

46

– ULTRA3 C0 17
SI snoop
Number of snoops from other processors

– ULTRA3 C0 18
SI ciq flow
Number of system cycles with flow control asserted from this processor

– ULTRA3 C0 19
SI owned
Number of times owned in is asserted on requests of this processor

– ULTRA3 C0 20
SW count 0
Number of occurences of special sethi-instructions

– ULTRA3 C0 21
IU Stat Br miss taken
Number of retired branches, that were predicted to be taken but that were not taken

– ULTRA3 C0 22
IU Stat Br count taken
Number of retired taken branches

– ULTRA3 C0 23
Dispatch rs mispred
Number of times instruction queue is empty because of return address stack misprediction

– ULTRA3 C0 24
FA pipe completion
Number of instructions completed on Floating Point / Graphics ALU pipeline

– ULTRA3 C0 32
MC reads 0
Number of completed read requests on memory bank 0

– ULTRA3 C0 33
MC reads 1
Number of completed read requests on memory bank 1

– ULTRA3 C0 34
MC reads 2
Number of completed read requests on memory bank 2

– ULTRA3 C0 35
MC reads 3
Number of completed read requests on memory bank 3

– ULTRA3 C0 36
MC stalls 0
Number of cycles memory controller was stalled because of bank busy 0

– ULTRA3 C0 37
MC stalls 2
Number of cycles memory controller was stalled because of bank busy 2

� Counter PIC1 counts:

– ULTRA3 C1 0
Cycle cnt
Machine cycles.

– ULTRA3 C1 1
Instr cnt
Instructions completed.

– ULTRA3 C1 2
Dispatch0 mispred
Number of cycles waiting with an empty instruction buffer after a wrong branch prediction.

– ULTRA3 C1 3
IC miss cancelled
Number of I-cache misses cancelled

47

– ULTRA3 C1 4
Re endian miss
Number of little endian loads that were predicted to be a big-endian load

– ULTRA3 C1 5
Re FPU bypass
Number of times a FPU bypass condition occured that does not have a direct bypass pass oc-
cured

– ULTRA3 C1 6
Re DC miss
Number of 1st level data cache misses

– ULTRA3 C1 7
Re EC miss
Number of 2nd level cache misses

– ULTRA3 C1 8
IC miss
Number of 1st level instructions cache misses

– ULTRA3 C1 9
DC rd miss
Number of 1st level data cache read misses

– ULTRA3 C1 10
DC write miss
Number of 1st level data cache write misses

– ULTRA3 C1 11
Rstall FP use
Number of stalls because FP results are not available

– ULTRA3 C1 12
EC misses
Number of 2nd level cache misses

– ULTRA3 C1 13
EC wb
Number of 2nd level cache writebacks (dirty blocks) caused by cache misses

– ULTRA3 C1 14
EC snoop cb
Number of 2nd level cache copybacks due to external snoops

– ULTRA3 C1 15
EC ic miss
Number of 2nd level cache read misses from 1st level instruction cache requests

– ULTRA3 C1 16
Re PC miss
Number of prefetch cache misses on a second load

– ULTRA3 C1 17
ITLB miss
Number of misses of the instruction TLB

– ULTRA3 C1 18
DTLB miss
Number of misses of the data TLB

– ULTRA3 C1 19
WC miss
Number of write cache misses

– ULTRA3 C1 20
WC snoop cb
Number of write cache copybacks caused by external snoop

– ULTRA3 C1 21
WC scrubbed
Number of write cache hits to clean lines

48

– ULTRA3 C1 22
WC wb wo read
Number of write cache writebacks without reads

– ULTRA3 C1 24
PC soft hit
Number of software prefetched prefetch cache hits

– ULTRA3 C1 25
PC snoop inv
Number of prefetch cache invalidates generated by external snoops and internal stores

– ULTRA3 C1 26
PC hard hit
Number of hardware prefetched prefetch cache hits

– ULTRA3 C1 27
PC port1 rd
Number of prefetch cache cacheable read references to 1st port

– ULTRA3 C1 28
SW count 1
Number of occurences of special sethi-instructions

– ULTRA3 C1 29
IU Stat Br mis untaken
Number of retired braches that were predicted to be untaken but were taken

– ULTRA3 C1 30
IU Stat Br count untaken
Number of retired untaken branches

– ULTRA3 C1 31
PC MS misses
Number of prefetch cache address misses

– ULTRA3 C1 32
MC writes 0
Number of completed write requests to memory bank 0

– ULTRA3 C1 33
MC writes 1
Number of completed write requests to memory bank 1

– ULTRA3 C1 34
MC writes 2
Number of completed write requests to memory bank 2

– ULTRA3 C1 35
MC writes 3
Number of completed write requests to memory bank 3

– ULTRA3 C1 36
MC stalls 1
Number of cycles memory controller was stalled because of bank busy 1

– ULTRA3 C1 37
MC stalls 3
Number of cycles memory controller was stalled because of bank busy 3

– ULTRA3 C1 38
Re RAW miss
Number of load stalls because of stores

– ULTRA3 C1 39
FM pipe completion
Number of instructions completed on Floating Point / Graphics multiply pipeline

49

A.4 PowerPC

A.4.1 PowerPC 604

The PowerPC 604 has 2 performance counters.

� Counter 1 counts:

– PPC604 C0 0
PM NOTHING
No events counted. Register counter holds current value.

– PPC604 C0 1
PM CYC
Processor cycles are counted.

– PPC604 C0 2
PM INST CMPL
Count the numbers of instructions completed every cycle.

– PPC604 C0 3
PM TB BIT TRANS
RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower
register).

– PPC604 C0 4
PM INST DISP
Number of instructions dispatched.

– PPC604 C0 5
PM IC MISS
Instruction cache misses.

– PPC604 C0 6
PM DTLB MISS
Data TLB misses (not speculative).

– PPC604 C0 7
PM BR MPRED
Branch incorrectly predicted.

– PPC604 C0 8
PM RESRV RQ
Number of reservations requested.

– PPC604 C0 9
PM LD MISS EXCEED L2
Number of data cache load misses exceeding the threshold value with lateral L2 cache interven-
tion.

– PPC604 C0 10
PM ST MISS EXCEED L2
Number of data cache store misses exceeding the threshold value with lateral L2 cache inter-
vention.

– PPC604 C0 11
PM MTSPRS DISP
Number of mtspr instructions dispatched.

– PPC604 C0 12
PM SYNC
Number of sync instructions completed.

– PPC604 C0 13
PM EIEIO
Number of eieio instructions completed.

– PPC604 C0 14
PM FXU CMPL
Number of integer instructions completed every cycle (no loads or stores).

50

– PPC604 C0 15
PM FPU CMPL
Number of floating-point instructions completed every cycle (no loads or stores).

– PPC604 C0 16
PM LS EXEC
LSU produced result without an exception condition.

– PPC604 C0 17
PM SFX1 FINISH
SCIU1 produced result. (add, subtract, compare, rotate, shift, or logical instruction.)

– PPC604 C0 18
PM FPU FINISH
FPU produced result.

– PPC604 C0 19
PM LS DISP
Number of instructions dispatched to the LSU.

– PPC604 C0 20
PM SFX1 DISP
Number of instructions dispatched to the SCIU1.

– PPC604 C0 21
PM FPU DISP
Number of instructions dispatched to the FPU.

– PPC604 C0 22
PM SNOOP RECV
Snoop requests received. Valid snoop from outside the 604. Does not know if it is a hit or miss.

– PPC604 C0 23
PM LD MISS EXCEED NO L2
Number of data cache load misses exceeding the threshold value without lateral L2 intervention.

– PPC604 C0 24
PM ST MISS EXCEED NO L2
Number of data cache store misses exceeding the threshold value without lateral L2 interven-
tion.

� Counter 2 counts:

– PPC604 C1 0
PM NOTHING
No events counted. Register counter holds current value.

– PPC604 C1 1
PM CYC
Processor cycles 0b1. Count every cycle.

– PPC604 C1 2
PM INST CMPL
Number of instructions completed. Legal values are 000, 001, 010, 011, 100.

– PPC604 C1 3
PM TB BIT TRANS
RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base lower
register).

– PPC604 C1 4
PM INST DISP
Number of instructions dispatched (0 to 4 instructions per cycle).

– PPC604 C1 5
PM LD MISS CYC
Number of cycles a load miss takes.

– PPC604 C1 6
PM DC MISS
Data cache misses (in order).

51

– PPC604 C1 7
PM ITLB MISS
Number of instruction TLB misses.

– PPC604 C1 8
PM BR CMPL
Number of branches completed. Indicates the number of branch instructions being completed
every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).

– PPC604 C1 9
PM RESRV CMPL
Number of reservations successfully obtained (stwcx. operation completed successfully).

– PPC604 C1 10
PM MFSPR DISP
Number of mfspr instructions dispatched (in order).

– PPC604 C1 11
PM ICBI
Number of icbi instructions. It may not hit in the cache.

– PPC604 C1 12
PM SYNCHRO INST CMPL
Number of pipeline ”flushing” instructions (sc, isync, mtspr (XER), mcrxr, floating-point oper-
ation with divide by 0 or invalid operand and MSR[FE0, FE1] = 00, branch with MSR[BE] = 1,
load string indexed with XER = 0, and SO bit getting set).

– PPC604 C1 13
PM BR FINISH
BPU produced result.

– PPC604 C1 14
PM SFX0 FINISH
SCIU0 produced result (of an add, subtract, compare, rotate, shift, or logical instruction).

– PPC604 C1 15
PM CFX FINISH
MCIU produced result (of a multiply/divide or SPR instruction).

– PPC604 C1 16
PM BR DISP
Number of instructions dispatched to the branch unit.

– PPC604 C1 17
PM SFX= DISP
Number of instructions dispatched to the SCIU0.

– PPC604 C1 18
PM LD CMPL
Number of loads completed. These include all cache operations and tlbie, tlbsync, sync, eieio,
and icbi instructions.

– PPC604 C1 19
PM CFX DISP
Number of instructions dispatched to the MCIU.

– PPC604 C1 20
PM SNOOP HIT
Number of snoop hits occurred.

A.4.2 PowerPC 604e

The PowerPC 604e is a 32-bit microprocessor with 32 32-bit integer and 32 32-bit floating point registers.
The 1st level cache consists of a 32 KB data cache (D-cache) and a 32 KB instruction cache (I-cache).
Different to other microprocessors, the PowerPC 604e has no on-chip logic to control a 2nd level chip but
signals are available for additional cache logic [9]. Additionally, there exist performance counter events
concerning the 2nd level cache. A detailed description of the PowerPC architecture can be found in [10].
The performance counters are 32 bit wide.
The pipelines of the PowerPC 604e consist of:

52

� a 5-stage branch unit (BPU/CRU)

� a 6-stage integer unit (SCIU1/SCIU2/MCIU)

� a 7-stage load/store unit (LSU)

� an 8-stage floating-point unit (FPU)

Sub-unit names are:

� BPU branch prediction unit

� CRU control register unit

� SCIUx single-cycle integer unit

� MCIU multiple-cycle integer unit

The PowerPC 604e has 4 performance counters (PMC1/PMC2/PMC3/PMC4) capable of counting 116
different events [11].

� Counter PMC1 counts:

– PPC604e C0 0
000 0000 Nothing. Register counter holds current value.
The counter keeps its current value.

– PPC604e C0 1
000 0001 Processor cycles 0b1. Count every cycle.
Number of cycles the processor executes ”0b1”.

– PPC604e C0 2
000 0010 Number of instructions completed every cycle.
Number of instructions completed each cycle.

– PPC604e C0 3
000 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base
lower register).
Bit-transitions on the RTCSELECT-Pin.

– PPC604e C0 4
000 0100 Number of instructions dispatched.
Number of instructions arrived at the 3rd stage of the instruction pipeline.

– PPC604e C0 5
000 0101 Instruction cache misses.
Number of 1st level instruction cache misses.

– PPC604e C0 6
000 0110 Data TLB misses (in order).
Number of misses in the translation look-aside buffer for data.

– PPC604e C0 7
000 0111 Branch misprediction correction from execute stage.
Number of correctable branch misses in the execution phase of the 4th stage of the pipeline.

– PPC604e C0 8
000 1000 Number of reservations requested. The lwarx instruction is ready for execution in the
LSU.
Number of reservations for an atomic load instruction in the LSU.

– PPC604e C0 9-PPC604e C0 10
000 1001 Number of data cache load misses exceeding the threshold value with lateral L2 cache
intervention.
000 1010 Number of data cache store misses exceeding the threshold value with lateral L2
cache intervention.
Number of 1st level data cache misses which exceeded a limit value and additionally, L2 INT
signal was active.

– PPC604e C0 11
000 1011 Number of mtspr instructions dispatched.
Number of mtspr instructions arrived at the 3rd stage of the pipeline.

53

– PPC604e C0 12-PPC604e C0 15
000 1100 Number of sync instructions completed.
000 1101 Number of eieio instructions completed.
000 1110 Number of integer instructions completed every cycle (no loads or stores).
000 1111 Number of floating-point instructions completed every cycle (no loads or stores).
Number of completed mtspr/sync/eieio/integer/floating-point instructions.

– PPC604e C0 16-PPC604e C0 18
001 0000 LSU produced result.
001 0001 SCIU1 produced result for an add, subtract, compare, rotate, shift, or logical instruc-
tion.
001 0010 FPU produced result.
Number of results generated at the LSU/SCIU1/FPU units.

– PPC604e C0 19-PPC604e C0 21
001 0011 Number of instructions dispatched to the LSU.
001 0100 Number of instructions dispatched to the SCIU1.
001 0101 Number of instructions dispatched to the FPU.
Number of instructions issued from the 3rd stage of the instruction pipeline to the
LSU/SCIU1/FPU unit.

– PPC604e C0 22
001 0110 Valid snoop requests received from outside the 604e. Does not distinguish hits or
misses.
Number of snoop requests.

– PPC604e C0 23-PPC604e C0 24
001 0111 Number of data cache load misses exceeding the threshold value without lateral L2
intervention.
001 1000 Number of data cache store misses exceeding the threshold value without lateral L2
intervention.
Number of 1st level data cache misses which exceeded a limit value and additionally, L2 INT
signal was not active.

– PPC604e C0 25-PPC604e C0 27
001 1001 Number of cycles the branch unit is idle.
001 1010 Number of cycles MCIU0 is idle.
001 1011 Number of cycles the LSU is idle. No new instructions are executing; however, active
loads or stores may be in the queues.
Number of cycles the BPU/MCIU0/LSU units were idle.

– PPC604e C0 28
001 1100 Number of times the L2 INT is asserted (regardless of TA state).
Number of times L2 INT signal was asserted.

– PPC604e C0 29
001 1101 Number of unaligned loads.
Number of unaligned loads.

– PPC604e C0 30
001 1110 Number of entries in the load queue each cycle (maximum of five). Although the load
queue has four entries, a load miss latch may hold a load waiting for data from memory.
Number of load queue entries per cycle (max. of 5).

– PPC604e C0 31
001 1111 Number of instruction breakpoint hits.
Number of times instructions hit a breakpoint.

� Counter PMC2 counts:

– PPC604e C1 0
00 0000 Nothing. Register counter holds current value.
The counter keeps its current value.

– PPC604e C1 1
00 0001 Processor cycles 0b1. Count every cycle.
Number of cycles the processor executes ”0b1”.

54

– PPC604e C1 2
00 0010 Number of instructions completed every cycle.
Number of instructions completed every cycle.

– PPC604e C1 3
00 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base
lower register).
Number of bit transitions on the RTCSELECT-pin.

– PPC604e C1 4
00 0100 Number of instructions dispatched.
Number of instructions dispatched to the 3rd stage of the instruction pipeline.

– PPC604e C1 5
00 0101 Number of cycles a load miss takes.
Number of load miss cycles.

– PPC604e C1 6
00 0110 Data cache misses (in order).
Number of 1st level data cache misses.

– PPC604e C1 7
00 0111 Number of instruction TLB misses.
Number of misses in the translation look-aside buffer for instructions.

– PPC604e C1 8
00 1000 Number of branches completed. Indicates the number of branch instructions being
completed every cycle (00 = none, 10 = one, 11 = two, 01 is an illegal value).
Number of completed branch instructions every cycle (max. of 2).

– PPC604e C1 9
00 1001 Number of reservations successfully obtained (stwcx. operation completed success-
fully).
Number of successfully completed atomic store instructions.

– PPC604e C1 10
00 1010 Number of mfspr instructions dispatched (in order).
Number of mfspr-instructions arrived at the 3rd stage of the instruction pipeline.

– PPC604e C1 11
00 1011 Number of icbi instructions. It may not hit in the cache.
Number of icbi-instructions without necessary hitting the cache.

– PPC604e C1 12
00 1100 Number of pipeline ”flushing” instructions (sc, isync, mtspr (XER), mcrxr, floating-
point operation with divide by 0 or invalid operand and MSR[FE0, FE1] = 00, branch with
MSR[BE] = 1, load string indexed with XER = 0, and SO bit getting set)
Number of instructions flushing the pipeline.

– PPC604e C1 13-PPC604e C1 15
00 1101 BPU produced result.
00 1110 SCIU0 produced result (of an add, subtract, compare, rotate, shift, or logical instruc-
tion).
00 1111 MCIU produced result (of a multiply/divide or SPR instruction).
Number of results produced by the BPU/SCIU0/MCIU-units.

– PPC604e C1 16-PPC604e C1 17
01 0000 Number of instructions dispatched to the branch unit.
01 0001 Number of instructions dispatched to the SCIU0.
Number of instructions issued from the 3rd stage of the instruction pipeline to the BPU/SCIU0-
units.

– PPC604e C1 18
01 0010 Number of loads completed. These include all cache operations and tlbie, tlbsync,
sync, eieio and icbi instructions.
Number of completed load instructions.

– PPC604e C1 19
01 0011 Number of instructions dispatched to the MCIU.
Number of instructions issued from the 3rd stage of the instruction pipeline to the MCIU-unit.

55

– PPC604e C1 20
01 0100 Number of snoop hits occurred.
Number of snoop hits.

– PPC604e C1 21
01 0101 Number of cycles during which the MSR[EE] bit is cleared.
Number of cycles during which the MSR[EE] bit is cleared.

– PPC604e C1 22-PPC604e C1 24
01 0110 Number of cycles the MCIU is idle.
01 0111 Number of cycles SCIU1 is idle.
01 1000 Number of cycles the FPU is idle.
Number of cycles the SCIU1/MCIU/FPU-unit is idle.

– PPC604e C1 25
01 1001 Number of cycles the L2 INT signal is active (regardless of TA state).
Number of cycles the L2 INT-pin had an active level.

– PPC604e C1 26-PPC604e C1 30
01 1010 Number of times four instructions were dispatched.
01 1011 Number of times three instructions were dispatched.
01 1100 Number of times two instructions were dispatched.
01 1101 Number of times one instruction was dispatched.
Number of times 1/2/3/4 instructions arrived at the 3rd stage of the instruction pipeline.

– PPC604e C1 31
01 1110 Number of unaligned stores.
Number of unaligned stores.

– PPC604e C1 32
01 1111 Number of entries in the store queue each cycle (maximum of six).
Number of entries in the store-queue every cycle (max. of 6).

� Counter PMC3 counts:

– PPC604e C2 0
0 0000 Nothing. Register counter holds current value.
The counter keeps its current value.

– PPC604e C2 1
0 0001 Processor cycles 0b1. Count every cycle.
Number of cycles the processor executes ”0b1”.

– PPC604e C2 2
0 0010 Number of instructions completed every cycle.
Number of instructions completed every cycle.

– PPC604e C2 3
0 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base
lower register).
Number of bit-transitions on the RTCSELECT-pin.

– PPC604e C2 4
0 0100 Number of instructions dispatched.
Number of instructions arrived at the 3rd stage of the instruction pipeline.

– PPC604e C2 5-PPC604e C2 7
0 0101 Number of cycles the LSU stalls due to BIU or cache busy. Counts cycles between when
a load or store request is made and a response was expected. For example, when a store is
retried, there are four cycles before the same instruction is presented to the cache again. Cycles
in between are not counted.
0 0110 Number of cycles the LSU stalls due to a full store queue.
0 0111 Number of cycles the LSU stalls due to operands not available in the reservation station.
Number of cycles the LSU-unit was blocked either because the LSU-unit was busy or the cache
was busy or the store queue was full or an operand was not available.

– PPC604e C2 8
0 1000 Number of instructions written into the load queue. Misaligned loads are split into two
transactions with the first part always written into the load queue. If both parts are cache hits,
data is returned to the rename registers and the first part is flushed from the load queue. To count

56

the instructions that enter the load queue to stay, the misaligned load hits must be subtracted.
Number of instructions in the load queue.

– PPC604e C2 9
0 1001 Number of cycles that completion stalls for a store instruction.
Number of cycles that completion stalls for a store instruction.

– PPC604e C2 10
0 1010 Number of cycles that completion stalls for an unfinished instruction.
Number of cycles that completion stalls for an unfinished instruction.

– PPC604e C2 11
0 1011 Number of system calls.
Number of system calls.

– PPC604e C2 12
0 1100 Number of cycles the BPU stalled as branch waits for its operand.
Number of cycles the BPU waits for an operand.

– PPC604e C2 13
0 1101 Number of fetch corrections made at the dispatch stage. Prioritized behind the execute
stage.
Number of fetch corrections made at the 3rd stage of the instruction pipeline.

– PPC604e C2 14
0 1110 Number of cycles the dispatch stalls waiting for instructions.
Number of cycles the 1st stage of the instruction pipeline waited for instructions.

– PPC604e C2 15
0 1111 Number of cycles the dispatch stalls due to unavailability of reorder buffer (ROB) entry.
No ROB entry was available for the first non-dispatched instruction.
Number of cycles the 1st stage of the instruction pipeline waited because the reorder buffer was
not available.

– PPC604e C2 16
1 0000 Number of cycles the dispatch unit stalls due to no FPR rename buffer available. First
non-dispatched instruction required a floating-point reorder buffer and none was available.
Number of cycles the 1st stage of the instruction pipeline waited because the FPR-rename buffer
was not available.

– PPC604e C2 17-PPC604e C2 18
1 0001 Number of instruction table search operations.
1 0010 Number of data table search operations. Completion could result from a page fault or a
PTE match.
Number of search operations in the data/instruction table.

– PPC604e C2 19-PPC604e C2 20
1 0011 Number of cycles the FPU stalled.
1 0100 Number of cycles the SCIU1 stalled.
Number of cycles the FPU-/SCIU1-unit was blocked.

– PPC604e C2 21
1 0101 Number of times the BIU forwards non-critical data from the line-fill buffer.
Number of transfers of uncritical data from the line-fill buffer done by the bus-interface unit and
initiated by the BIU. to the

– PPC604e C2 22
1 0110 Number of data bus transactions completed with pipelining one deep with no additional
bus transactions queued behind it.
Number of completed data bus transactions without additional bus transactions queued.

– PPC604e C2 23
1 0111 Number of data bus transactions completed with two data bus transactions queued
behind.
Number of completed data bus transactions with two additional bus transactions queued.

– PPC604e C2 24
1 1000 Counts pairs of back-to-back burst reads streamed without a dead cycle between them
in data streaming mode
Number of paired back-to-back-burst-read accesses without intervening idle cycles.

57

– PPC604e C2 25
1 1001 Counts non- >@?BA@?DCBE processor kill transactions caused by a write-hit-on-shared con-
dition
Number of invalidated cache lines caused by a write hit to a shared line.

– PPC604e C2 26
1 1010 This event counts non- ><?<A<?BCDE write-with-kill address operations that originate from
the three castout buffers. These include high-priority write-with-kill transactions caused by a
snoop hit on modified data in one of the BIU’s three copy-back buffers. When the cache block
on a data cache miss is modified, it is queued in one of three copy-back buffers. The miss is
serviced before the copy-back buffer is written back to memory as a write-with-kill transaction.
Number of Write-with-kill-address operations.

– PPC604e C2 27
1 1011 Number of cycles when exactly two castout buffers are occupied.
Number of cycles when exactly two castout buffers are occupied. Castout-buffer are used to
write 1st level data cache lines to memory.

– PPC604e C2 28
1 1100 Number of data cache accesses retried due to occupied castout buffers.
Number of retried 1st ;level data cache accesses due to occupied castout buffer.

– PPC604e C2 29
1 1101 Number of read transactions from load misses brought into the cache in a shared state.
Number of read transactions which (after a miss) brought a 1st level cache line into the cache
with a status of shared.

– PPC604e C2 30
1 1110 CRU Indicates that a CR logical instruction is being finished.
Number of logical instructions completed in the CRU.

� Counter PMC4 counts:

– PPC604e C3 0
0 0000 Nothing. Register counter holds current value.
The counter keeps its current value.

– PPC604e C3 1
0 0001 Processor cycles 0b1. Count every cycle.
Number of cycles the processor executes ”0b1”.

– PPC604e C3 2
0 0010 Number of instructions completed every cycle.
Number of instructions every cycle.

– PPC604e C3 4
0 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 (bits from the time base
lower register).
Number of bit-transitions on the RTCSELECT-pin.

– PPC604e C3 5
0 0100 Number of instructions dispatched.
Number of instructions arrived at the 3rd stage of the instruction pipeline.

– PPC604e C3 6-PPC604e C3 8
0 0101 Number of cycles the LSU stalls due to busy MMU.
0 0110 Number of cycles the LSU stalls due to the load queue full.
0 0111 Number of cycles the LSU stalls due to address collision.
Number of cycles the LSU stalled because of a busy MMU, full load queue, or address collision.

– PPC604e C3 9
0 1000 Number of misaligned loads that are cache hits for both the first and second accesses.
Number of misaligned loads that are cache hits for both the first and second accesses.

– PPC604e C3 10
0 1001 Number of instructions written into the store queue.
Number of instructions written into the store queue.

– PPC604e C3 11
0 1010 Number of cycles that completion stalls for a load instruction.
Number of cycles the completion of an instructions stalled because of a load instruction.

58

– PPC604e C3 12
0 1011 Number of hits in the BTAC. Warning-if decode buffers cannot accept new instructions,
the processor re-fetches the same address multiple times.
Number of hits in the Branch Target Address Cache.

– PPC604e C3 13
0 1100 Number of times the four basic blocks in the completion buffer from which instructions
can be retired were used
Number of times the four basic blocks in the completion buffer from which instructions can be
retired were used.

– PPC604e C3 14
0 1101 Number of fetch corrections made at decode stage.
Number of corrections made between the 1st and 2nd stage of the instruction pipeline.

– PPC604e C3 15-PPC604e C3 18
0 1110 Number of cycles the dispatch unit stalls due to no unit available. First non-dispatched
instruction requires an execution unit that is either full or a previous instruction is being dis-
patched to that unit.
0 1111 Number of cycles the dispatch unit stalls due to unavailability of GPR rename buffer.
First non-dispatched instruction requires a GPR reorder buffer and none are available.
1 0000 Number of cycles the dispatch unit stalls due to no CR rename buffer available. First
non-dispatched instruction requires a CR rename buffer and none is available.
1 0001 Number of cycles the dispatch unit stalls due to CTR/LR interlock. First non-dispatched
instruction could not dispatch due to CTR/LR/mtcrf interlock.
Number of cycles spent at the 3rd stage of the instruction pipeline waiting for any of the condi-
tions:
= in the 4th stage of the pipeline (MCIU/SCIU0/SCIU1..) was no unit available
= no GPR-Rename-Buffer was available
= no CR-Rename-Buffer was available
= the Counter- or Link-Register was locked

– PPC604e C3 19-PPC604e C3 20
1 0010 Number of cycles spent doing instruction table search operations.
1 0011 Number of cycles spent doing data table search operations.
Number of cycles spent searching in the data/instruction table.

– PPC604e C3 21-PPC604e C3 22
1 0100 Number of cycles SCIU0 was stalled.
1 0101 Number of cycles MCIU was stalled.
Number of cycles the MCIU/SCIU0 was stalled.

– PPC604e C3 23
1 0110 Number of bus cycles after an internal bus request without a qualified bus grant.
Number of bus-cycles after an internal bus request without a qualified bus grant.

– PPC604e C3 24
1 0111 Number of data bus transactions completed with one data bus transaction queued behind
Number of completed data-bus transactions with one data bus transaction queued behind.

– PPC604e C3 25
1 1000 Number of write data transactions that have been reordered before a previous read data
transaction using the DBWO feature
Number of write data transactions that have been reordered before a previous read data transac-
tion.

– PPC604e C3 26
1 1001 Number of ><?BA@?DCFE processor address bus transactions.
Number of address bus transactions caused by a signal change at the >@?BA@?DCGE -pin.

– PPC604e C3 27
1 1010 Number of high-priority snoop pushes. Snoop transactions, except for write-with-kill,
that hit modified data in the data cache cause a high-priority write (snoop push) of that modified
cache block to memory. This operation has a transaction type of write-with-kill. This event
counts the number of non- >@?BA@?DCBE processor write-with-kill transactions that were caused
by a snoop hit on modified data in the data cache. It does not count high-priority write-with-kill
transactions caused by snoop hits on modified data in one of the BIU’s three copy-back buffers.
Number of high-priority snoop pushes.

59

– PPC604e C3 28-PPC604e C3 29
1 1011 Number of cycles for which exactly one castout buffer is occupied
1 1100 Number of cycles for which exactly three castout buffers are occupied
Number of cycles for which exactly one/three castout buffer is/are occupied.

– PPC604e C3 30
1 1101 Number of read transactions from load misses brought into the cache in an exclusive (E)
state
Number of read transactions caused by a load miss and which got brought into the cache in
exclusive state.

– PPC604e C3 31
1 1110 Number of un-dispatched instructions beyond branch
Number of undispatched instructions beyond branch.

IBM has the PMapi library which supports access to the performance counters on different PowerPC and
POWER chips. PMapi supports the distinction between supervisor mode, problem (user) mode, or both.
On AIX versions 4.2 and higher, performance counter status is saved and restored on context switches.

A.4.3 POWER3

The POWER3 has 8 performance counters. Missing counter/event pairs mean an unused event for that
counter. To be consistent with the numbering scheme with start numbering with POWER3 C0 xx for
counter 1.

� Counter 1 counts:

– POWER3 C0 0
PM CYC
Processor clock cycles

– POWER3 C0 1
PM INST CMPL
Number of instructions completed

– POWER3 C0 2
PM TB BIT TRANS
Selected Time Base output

– POWER3 C0 3
PM INST DISP
Number of instructions dispatched

– POWER3 C0 4
PM LD CMPL
Number of load instructions completed (max. 4 per cycle)

– POWER3 C0 5
PM IC MISS
L1 I-cache miss

– POWER3 C0 6
PM LD MISS L2HIT
A load miss occured in L1

– POWER3 C0 7
PM LD MISS EXCEED NO L2
Thresholder counting tagged loads (no L2 intervention)

– POWER3 C0 9
PM ST MISS EXCEED NO L2
Thresholder counting a tagged store (no L2 intervention)

– POWER3 C0 10
PM BURSTRD L2MISS W INT
L2 burst read miss & another processor has a modified copy

– POWER3 C0 12
PM PM IC MISS USED
An icache miss line was brought in and used

60

– POWER3 C0 13
PM DU ECAM/RCAM OFFSET HIT
The ECAM/RCAM logic detected an offset hit from DU

– POWER3 C0 14
PM GLOBAL CANCEL INST DEL
Number of instructions deleted on global cancel

– POWER3 C0 15
PM CHAIN 1 TO 8
Chain counter History Mode with PMC1[msb] chained to PMC[lsb]

– POWER3 C0 16
PM FPU0 BUSY
Floating Point Unit 0 busy

– POWER3 C0 17
PM DSLB MISS
D-cache SLB miss occured

– POWER3 C0 18
PM TAG ST DISP LSU0
LSU0 issued a tagged store request to D-cache

– POWER3 C0 19
PM TLB MISS
TLB miss. Includes both D-cache and I-cache misses

– POWER3 C0 20
PM EE OFF
The MSR EE bit is off

– POWER3 C0 21
PM BRU IDLE
Branch Unit is idle

– POWER3 C0 22
PM SYNCHRO INST
A single instruction serialization is executing

– POWER3 C0 24
PM CYC 1STBUF OCCP
Number of cycles 1 and only 1 store buffer is occupied

– POWER3 C0 25
PM SNOOP L1 M TO E OR S
Number of snoop based L1 transitions from M to E or S

– POWER3 C0 26
PM ST CMPL BF AT GC
Number of stores in the completion bffer at global cancel

– POWER3 C0 27
PM LINK STACK FULL
Link register stack is full

– POWER3 C0 28
PM CBR RESOLV DISP
A conditional branch was resolved at dispatch

– POWER3 C0 29
PM LD CMPL BF AT GC
Numbr of loads in the completion buffer at global cancel

– POWER3 C0 30
PM ENTRY CMPL BF
Number of entries in the completion buffer

– POWER3 C0 32
PM BIU ST RTRY6xx
6xx master transaction retried on bus for store op

61

– POWER3 C0 33
PM EIEIO WT ST
Number of cycles EIEIO stalls a store

– POWER3 C0 35
PM I=1 ST TO BUS
Number of I=1 store operations to bus

– POWER3 C0 36
PM CRB BUSY ENT
Number of CRB busy block entries

– POWER3 C0 37
PM DC PREF STREAM ALLOC BLK
Number of D-cache prefetch data stream allocatons blocked due to four stream

– POWER3 C0 38
PM W=1 ST
Number of W=1 accesses (store)

– POWER3 C0 39
PM LD CI
Number of cache inhibit (I=1) loads

– POWER3 C0 40
PM 4MISS
Number of cycles with 4 outstanding misses

– POWER3 C0 41
PM ST GATH BYTES
Number of store bytes gathered

– POWER3 C0 42
PM DC HIT UNDER MISS
Number of D-cache hit under misses (max of 2/cycles)

– POWER3 C0 43
PM INTLEAVE CONFL STALLS
Number of cycles a store stalls due to interleave conflict or other resource conflicts

– POWER3 C0 44
PM DU1 REQ ST ADDR XTION DU1
A store address translation was requested from DU1

– POWER3 C0 45
PM BTC/BTL BLK
Number of cycles branch-to-count/branch-to-link is blocked from dispatch

– POWER3 C0 46
PM FPU SUCCESS OOO INST SCHE
Number of FPU successful out-of-order instruction scheduling to both FPU units

– POWER3 C0 47
PM FPU LD/ST ISSUES
Number of FPU loads and stores issued by LSU to DU

– POWER3 C0 48
PM FPU EXEC FPSCR FPU
FPU exceeded an FPSCR (count both FPUs)

– POWER3 C0 49
PM FPU0 EXEC FSQRT FPU0
FPU0 executed an FSQRT instruction

– POWER3 C0 50
PM FPU0 EXEC ESTIMATE FPU0
FPU0 executed Estimate instructions, FRSQRTE, FRES

� Counter 2 counts:

– POWER3 C1 0
PM INST CMPL
Number of instructions completed

62

– POWER3 C1 1
PM CYC
Processor clock cycles

– POWER3 C1 2
PM TB BIT TRANS
Time Base bit transition

– POWER3 C1 3
PM INST DISP
Number of instructions dispatched (Max 4 per cycle)

– POWER3 C1 4
PM SNOOP L2ACC
Snooped operation which accesses L2

– POWER3 C1 5
PM DU0 REQ ADDR XTION DU0
A store address translation was requested from DU0

– POWER3 C1 6
PM TAG BURSTRD L2MISS
L2 miss caused by tagged burst read

– POWER3 C1 7
PM FPU IQ FULL
Number of cycles the FPU instruction queue is full

– POWER3 C1 8
PM BR PRED
A conditional branch was predicted

– POWER3 C1 9
PM ST MISS
Store miss occurred in L1

– POWER3 C1 10
PM LD MISS EXCEED L2
Thresholder counting a tagged load (with L2 intervention)

– POWER3 C1 11
PM L2ACC BY RWITM
RWITM caused an L2 access

– POWER3 C1 12
PM ST MISS EXCEED L2
Store data cache misses that exceeded threshold with lateral L2 cache intervention

– POWER3 C1 13
PM ST COND FAIL
Store conditional (stcx) instruction failed

– POWER3 C1 14
PM CI STORE WAIT CI STORE
Number of cycles a cache-inhibited store waited on a cache-inhibited store

– POWER3 C1 15
PM CHAIN 2 TO 1
Chain counter History Mode with PMC2[msb] chained to PMC1[lsb]

– POWER3 C1 16
PM TAG BURSTRD L2MISS W INT
Tagged L2 burst read miss and another processor has a modified copy

– POWER3 C1 17
PM FXU2 IDLE
FXU2 idle

– POWER3 C1 18
PM SC INST
Number of system calls

63

– POWER3 C1 19
PM DSLB MISS
D-cache SLB miss occurred

– POWER3 C1 20
PM 2CASTOUT BF
Number of cycles 2 and only 2 store buffers are occupied

– POWER3 C1 21
PM BIU LD NORTRY
Master generated load operation is not retried

– POWER3 C1 22
PM RESRV RQ
Number of larx executed (non speculative)

– POWER3 C1 23
PM SNOOP E TO S
Number of snoop-based L2 transitions from E to S

– POWER3 C1 25
PM IBUF EMPTY
Instruction buffer empty this cycle

– POWER3 C1 26
PM SYNC CYC
Number of cycles a sync instruction is at the bottom of the completion buffer

– POWER3 C1 27
PM TLBSYNC CYC
Number of cycles a tlbsync instruction is at the bottom of the completion buffer

– POWER3 C1 28
PM DC PREF L2 INV
Number of D-cache lines invalidated in L2 due to a prefetch load data

– POWER3 C1 29
PM DC PREF FILT 1STR
Number of cycles D-cache prefetch filter has 1 and only 1 stream entry

– POWER3 C1 30
PM ST CI PREGATH
Number of I=1 stores (before gathering)

– POWER3 C1 31
PM ST GATH HW
Number of store halfword gathered

– POWER3 C1 32
PM LD WT ADDR CONF
Number of cycles load stalls due to interleave conflict

– POWER3 C1 33
PM TAG LD DATA RECV
LSU1 received data from memory side

– POWER3 C1 34
PM FPU1 DENORM
FPU1 received denormalized data

– POWER3 C1 35
PM FPU1 CMPL
FPU1 produced a result

– POWER3 C1 36
PM FPU FEST
FPU executed Estimate instructions FRSQRTE, FRES (count both FPUs)

– POWER3 C1 37
PM FPU LD
Number of FPU loads issued by the LSU to the DU

64

– POWER3 C1 38
PM FPU0 FDIV
FPU0 executed a divide

– POWER3 C1 39
PM FPU0 FPSCR
FPU0 executed an FPSCR

� Counter 3 counts:

– POWER3 C2 0
PM IC MISS USED
An icache miss line was brought in and used

– POWER3 C2 1
PM CYC
Processor clock cycles

– POWER3 C2 2
PM INST CMPL
Number of instructions completed per cycle

– POWER3 C2 3
PM TB BIT TRANS
Selected Time Base outputs

– POWER3 C2 4
PM INST DISP
Number of instructions dispatched (max. 4 per cycle)

– POWER3 C2 5
PM LD MISS L1
A load miss occured in L1

– POWER3 C2 6
PM TAG ST L2MISS
Tagged RWITM caused L2 miss

– POWER3 C2 7
PM BRQ FILLED CYC
Number of cycles the branch queue is full

– POWER3 C2 8
PM TAG ST L2MISS W INT
Tagged L2 RWITM miss, another processor has a modified copy

– POWER3 C2 9
PM ST CMPL
Number of store instructions completed

– POWER3 C2 10
PM TAG ST CMPL
Number of tagged stores completed

– POWER3 C2 11
PM LD NEXT
LOad instruction is at the bottom of the completion buffer

– POWER3 C2 12
PM ST L2MISS
RWITM caused L2 miss

– POWER3 C2 13
PM TAG BURSTRD L2ACC
Tagged burst read caused L2 access

– POWER3 C2 14
PM CI ST WT CI ST
Number of cycles a cache-inhibited store waited on a cache-inhibited store

– POWER3 C2 15
PM CHAIN 3 TO 2
Chain counter History Mode with PMC3[msb] chanied to PMC2[lsb]

65

– POWER3 C2 16
PM UNALIGNED ST
Number of unaligned stores (one occurence per valid unaligned store AGEN)

– POWER3 C2 17
PM CORE ST N COPYBACK
Number of all core-originated stores and copybacks

– POWER3 C2 18
PM SYNC RERUN
Number of sync rerun operations initiated by the master

– POWER3 C2 19
PM 3CASTOUT BF
Number of cycles 3 and only 3 store buffers are occupied

– POWER3 C2 20
PM BIU RETRY DU LOST RES
Number of time BIU sends a retry but DU already lost reservation (I=1 only)

– POWER3 C2 21
PM SNOOP L2 E OR S TO I
Number of snoop-based L2 transitions from E or S to I

– POWER3 C2 22
PM FPU FDIV
FPU divides executed (count both FPUs)

– POWER3 C2 24
PM IO INTERPT
Number of I/O interrupts detected

– POWER3 C2 25
PM DC PREF HIT
Number of D-cache prefetch request and data in prefetch buffer

– POWER3 C2 26
PM DC PREF FILT 2STR
Number of cycles D-cache prefetch filter has 2 and only 2 stream entries

– POWER3 C2 27
PM PREF MATCH DEM MISS
Prefetch matches a demand miss

– POWER3 C2 28
PM LSU1 IDLE
LSU1 idle

� Counter 4 counts:

– POWER3 C3 1
PM CYC
Processor clock cycles

– POWER3 C3 2
PM INST CMPL
Number of instructions completed

– POWER3 C3 3
PM TB BIT TRANS
Selected Time Base outputs

– POWER3 C3 4
PM INST DISP
Number of instructions dispatched (Max 4 per cycle)

– POWER3 C3 5
PM LD CMPL
Number of load instructions completed (max 4 per cycle)

– POWER3 C3 6
PM FPU0 DENORM
FPU0 received denormalized data

66

– POWER3 C3 7
PM TAG LD DC
LSU0 issued a tagged load request to D-cache

– POWER3 C3 8
PM TAG ST L2ACC
Tagged RWITM caused L2 access

– POWER3 C3 9
PM LSU0 LD DATA
LSU0 received data from memory side (L1/L2/6xx)

– POWER3 C3 10
PM ST L2MISS W INT
L2 RWITM miss, another processor has modified copy

– POWER3 C3 11
PM SYNC
Sync request was made to the BIU

– POWER3 C3 13
PM FXU2 BUSY
FXU2 was busy executing an instruction

– POWER3 C3 14
PM BIU ST NORTRY
Master generated store operation is not retried

– POWER3 C3 15
PM CHAIN 4 TO 3
Chain counter History Mode with PMC4[msb] chained to PMC3[lsb]

– POWER3 C3 16
PM DC ALIAS HIT
ECAM/RCAM logic detected an aliased hit

– POWER3 C3 17
PM FXU1 IDLE
FXU1 idle

– POWER3 C3 18
PM UNALIGNED LD
Number of unaligned loads (one occurence per valid load AGEN)

– POWER3 C3 19
PM CMPLU WT LD
Completion unit is stalled on load operations

– POWER3 C3 20
PM BIU ARI RTRY
A master-generated Bus operation received an ARespIn (ARI) retry

– POWER3 C3 21
PM FPU FSQRT
Number of FPU FSQRT executed (count both FPUs)

– POWER3 C3 22
PM BR CMPL
Branch completed

– POWER3 C3 23
PM DISP BF EMPTY
Dispatch buffer is empty this cycle

– POWER3 C3 24
PM LNK REG STACK ERR
Link register stack error

– POWER3 C3 25
PM CRLU PROD RES
CR logical unit produced a result

67

– POWER3 C3 26
PM TLBSYNC RERUN
Number of tlbsync rerun operations initiated by the master

– POWER3 C3 27
PM SNOOP L2 M TO E OR S
Number of snoop-based L2 transition from M to E or S

– POWER3 C3 29
PM DEM FETCH WT PREF
Number of demand fetch blocked by outstanding prefetch

– POWER3 C3 30
PM FPU0 EXEC FRSP/FCONV
FPU0 executed FRSP or FCONV

� Counter 5 counts:

– POWER3 C4 1
PM IC HIT
The IC was accessed and a block was fetched

– POWER3 C4 2
PM 0INST CMPL
No instructions were completed

– POWER3 C4 3
PM FPU DENORM
FPU sent denormalized data (count both FPUs)

– POWER3 C4 4
PM BURSTRD L2ACC
Burst read caused L2 access

– POWER3 C4 5
PM FPU0 CMPL
FPU0 produced a result

– POWER3 C4 6
PM LSU IDLE
LSU idle (count both LSUs)

– POWER3 C4 7
PM BTAC HITS
Number of hits in the BTAC

– POWER3 C4 8
PM STQ FULL
Store queue is full

– POWER3 C4 9
PM BIU WT ST BF
A master-generated store operation is stalled waiting for a store buffer

– POWER3 C4 10
PM SNOOP L2 M TO I
Number of snoop-based L2 transitions from M to I

– POWER3 C4 11
PM FRSP/FCONV EXEC
Float FRSP or FCONV executed (count both FPUs)

– POWER3 C4 12
PM CYC
Processor clock cycles

– POWER3 C4 13
PM BIU ASI RTRY
A master-generated bus operation received a AStatIn (ASI) Retry

– POWER3 C4 15
PM CHAIN 5 TO 4
Chain Counter History mode with PMC5[msb] chained to PMC4[lsb]

68

– POWER3 C4 16
PM DC REQ HIT PREF BUF
Number of D-cache request hit on prefetch buffer

– POWER3 C4 17
PM DC PREF FILT 3STR
Number of cycles D-cache prefetch filter has 3 and only 3 stream entries

– POWER3 C4 18
PM 3MISS
Number of cycles D-cache with 3 and only 3 outstanding misses

– POWER3 C4 19
PM ST GATH WORD
Number of Word gathered (store)

– POWER3 C4 20
PM LD WT ST CONF
Number of cycles load stalls due to store conflict

– POWER3 C4 21
PM LSU1 ISS TAG ST
LSU1 issued a tagged store request to D-cache

– POWER3 C4 22
PM FPU1 BUSY
FPU1 was busy

– POWER3 C4 23
PM FPU0 FMOV FEST
FPU0 executed MOVE, or EST, or FSEL

– POWER3 C4 24
PM 4CASTOUT BUF
Number of cycles 4 and only 4 castout push buffers used

� Counter 6 counts:

– POWER3 C5 0
PM DSLB MISS
D-cache SLB miss occured

– POWER3 C5 1
PM ST L1HIT
A store hit occured in L1

– POWER3 C5 2
PM FXU2 PROD RESULT
FXU2 produced a result

– POWER3 C5 3
PM BTAC MISS
A BTAC miss was detected

– POWER3 C5 5
PM CBR DISP
A conditional branch was dispatched

– POWER3 C5 6
PM LQ FULL
Miss (load) queue is full

– POWER3 C5 8
PM SNOOP PUSH INT
Number of snoop pushes and interventions

– POWER3 C5 9
PM EE OFF EXT INT MSR
EE bit os off and an external interrupt is pending

– POWER3 C5 10
PM BIU LD RTRY
A master generated load operation is retried

69

– POWER3 C5 11
PM FPU EXE FCMP
Float FCMP executed (count both FPUs)

– POWER3 C5 12
PM CYC
Processor clock cycles

– POWER3 C5 13
PM DC PREF BF INV
Number of D-cache prefetch buffer invalidates

– POWER3 C5 14
PM DC PREF FILT 4STR
Number of cycles D-cache prefetch filter has 4 and only 4 stream entries

– POWER3 C5 15
PM CHAIN 6 TO 5
Chain counter History Mode with PMC6[msb] chained to PMC5[lsb]

– POWER3 C5 16
PM 1MISS
Number of cycles with 1 and only 1 outstanding miss

– POWER3 C5 17
PM ST GATH DW
Number of Doubleword gathered (stored)

– POWER3 C5 18
PM LSU1 ISS TAG LD LSU1
LSU1 issued a tagged load request to D-cache

– POWER3 C5 19
PM FPU1 IDLE
FPU1 idle

– POWER3 C5 20
PM FPU0 FMA
FPU0 executed a Multiply-Add

– POWER3 C5 21
PM SNOOP PUSH BUF
Number of cycles snoop push buffer used

� Counter 7 counts:

– POWER3 C6 0
PM IC MISS
L1 I-cache misses

– POWER3 C6 1
PM FXU0 PROD RESULT
FXU0 produced a result

– POWER3 C6 2
PM BR DISP
Instrs dispatched to the branch unit

– POWER3 C6 3
PM MPRED BR CAUSED GC
Global cancel due to branch guessed wrong

– POWER3 C6 4
PM SNOOP
Snoop requests received

– POWER3 C6 6
PM 0INST DISP
No instructions were dipatched

– POWER3 C6 7
PM FXU IDLE
Number of cycles the FXU units are idle

70

– POWER3 C6 8
PM 6XX RTRY CHNG TRTP
Bus retried transaction that change transaction type

– POWER3 C6 9
PM EXEC FMA
Float Multiply-Adds executed (count both FPUs)

– POWER3 C6 10
PM ST DISP
Number of store instructions were dispatched

– POWER3 C6 11
PM CYC
Processor clock cycles

– POWER3 C6 12
PM TLBSYNC CMPLBF
Number of cycles a tlbsync instruction is at the bottom of the completion buffer

– POWER3 C6 14
PM DC PREF L2HIT
Number of D-cache prefetch request and data in L2

– POWER3 C6 15
PM CHAIN 7 TO 6
Chain Counter History Mode with PMC7[msb] chained to PMC6[lsb]

– POWER3 C6 16
PM DC PREF BLOCK DEMAND MISS
Number of cycles demand miss blocked with 1 or more prefetches outstanding

– POWER3 C6 17
PM 2MISS
Number of cycles with 2 and only 2 outstanding misses

– POWER3 C6 18
PM DC PREF USED
Number of D-cache prefetch and used

– POWER3 C6 19
PM LSU WT SNOOP BUSY
Number of cycles load/store stall due to snoop busy

– POWER3 C6 20
PM IC PREF USED
Number of I prefetch miss in progress changed to a normal, non-prefetch

– POWER3 C6 22
PM FPU0 FADD FCMP GMUL
FPU0 executed an Add, Compare, Multiply, Subtract

– POWER3 C6 23
PM 1WT THRU BUF USED
Number of cycles 1 write-through buffer used

� Counter 8 counts:

– POWER3 C7 0
PM TLB MISS
TLB misses. Includes both D-cache and I-cache misses

– POWER3 C7 1
PM SNOOP L2HIT
Snoop hit occured and L2 has the valid block

– POWER3 C7 2
PM BURSTRD L2MISS
A burst read caused L2 miss

– POWER3 C7 3
PM RESRV CMPL
Store conditional (stcx) instruction executed successfully

71

– POWER3 C7 4
PM FXU1 PROD RESULT
FXU1 produced a result

– POWER3 C7 5
PM RETRY BUS OP
Retry 6xx bus operation

– POWER3 C7 6
PM FPU IDLE
FPU idle (count both FPUs)

– POWER3 C7 7
PM FETCH CORR AT DISPATCH
Fetch corrections made at dispatch stage

– POWER3 C7 8
PM CMPLU WT ST
Completion unit is stalled on store operations

– POWER3 C7 9
PM FPU FADD FMUL
Float Add, Multiply, Subtract executed (count both FPUs)

– POWER3 C7 10
PM LD DISP
Number of load instructions dispatched (lm and lst counted as 1)

– POWER3 C7 11
PM ALIGN INT
An alignment interrupt was executed

– POWER3 C7 12
PM CYC
Processor clock cycles

– POWER3 C7 13
PM SYNC CMPL BF CYC
Number of cycles a sync instruction is at the bottom of the completion buffer

– POWER3 C7 14
PM 2WT THRU NUF USED
Number of cycles 2 write-through buffer used

– POWER3 C7 15
PM CHAIN 8 TO 7
Chain counter History Mode with PMC8[msb] chained to PMC6[lsb]

A.4.4 POWER3-II

The POWER3-II has 8 performance counters. Missing counter/event pairs mean an unused event for that
counter. To be consistent with the numbering scheme with start numbering with POWER3II C0 xx for
counter 1.

� Counter 1 counts:

– POWER3II C0 0
PM CYC
Processor clock cycles

– POWER3II C0 1
PM INST CMPL
Number of instructions completed

– POWER3II C0 2
PM TB BIT TRANS
Selected Time Base output

– POWER3II C0 3
PM INST DISP
Number of instructions dispatched

72

– POWER3II C0 4
PM LD CMPL
Number of load instructions completed (max. 4 per cycle)

– POWER3II C0 5
PM IC MISS
L1 I-cache miss

– POWER3II C0 6
PM LD MISS L2HIT
A load miss occured in L1

– POWER3II C0 7
PM LD MISS EXCEED NO L2
Thresholder counting tagged loads (no L2 intervention)

– POWER3II C0 9
PM ST MISS EXCEED NO L2
Thresholder counting a tagged store (no L2 intervention)

– POWER3II C0 10
PM BURSTRD L2MISS W INT
L2 burst read miss & another processor has a modified copy

– POWER3II C0 12
PM PM IC MISS USED
An icache miss line was brought in and used

– POWER3II C0 13
PM DU ECAM/RCAM OFFSET HIT
The ECAM/RCAM logic detected an offset hit from DU

– POWER3II C0 14
PM GLOBAL CANCEL INST DEL
Number of instructions deleted on global cancel

– POWER3II C0 15
PM CHAIN 1 TO 8
Chain counter History Mode with PMC1[msb] chained to PMC[lsb]

– POWER3II C0 16
PM FPU0 BUSY
Floating Point Unit 0 busy

– POWER3II C0 17
PM DSLB MISS
D-cache SLB miss occured

– POWER3II C0 18
PM TAG ST DISP LSU0
LSU0 issued a tagged store request to D-cache

– POWER3II C0 19
PM TLB MISS
TLB miss. Includes both D-cache and I-cache misses

– POWER3II C0 20
PM EE OFF
The MSR EE bit is off

– POWER3II C0 21
PM BRU IDLE
Branch Unit is idle

– POWER3II C0 22
PM SYNCHRO INST
A single instruction serialization is executing

– POWER3II C0 24
PM CYC 1STBUF OCCP
Number of cycles 1 and only 1 store buffer is occupied

73

– POWER3II C0 25
PM SNOOP L1 M TO E OR S
Number of snoop based L1 transitions from M to E or S

– POWER3II C0 26
PM ST CMPL BF AT GC
Number of stores in the completion bffer at global cancel

– POWER3II C0 27
PM LINK STACK FULL
Link register stack is full

– POWER3II C0 28
PM CBR RESOLV DISP
A conditional branch was resolved at dispatch

– POWER3II C0 29
PM LD CMPL BF AT GC
Numbr of loads in the completion buffer at global cancel

– POWER3II C0 30
PM ENTRY CMPL BF
Number of entries in the completion buffer

– POWER3II C0 32
PM BIU ST RTRY6xx
6xx master transaction retried on bus for store op

– POWER3II C0 33
PM EIEIO WT ST
Number of cycles EIEIO stalls a store

– POWER3II C0 35
PM I=1 ST TO BUS
Number of I=1 store operations to bus

– POWER3II C0 36
PM CRB BUSY ENT
Number of CRB busy block entries

– POWER3II C0 37
PM DC PREF STREAM ALLOC BLK
Number of D-cache prefetch data stream allocatons blocked due to four stream

– POWER3II C0 38
PM W=1 ST
Number of W=1 accesses (store)

– POWER3II C0 39
PM LD CI
Number of cache inhibit (I=1) loads

– POWER3II C0 40
PM 4MISS
Number of cycles with 4 outstanding misses

– POWER3II C0 41
PM ST GATH BYTES
Number of store bytes gathered

– POWER3II C0 42
PM DC HIT UNDER MISS
Number of D-cache hit under misses (max of 2/cycles)

– POWER3II C0 43
PM INTLEAVE CONFL STALLS
Number of cycles a store stalls due to interleave conflict or other resource conflicts

– POWER3II C0 44
PM DU1 REQ ST ADDR XTION DU1
A store address translation was requested from DU1

74

– POWER3II C0 45
PM BTC/BTL BLK
Number of cycles branch-to-count/branch-to-link is blocked from dispatch

– POWER3II C0 46
PM FPU SUCCESS OOO INST SCHE
Number of FPU successful out-of-order instruction scheduling to both FPU units

– POWER3II C0 47
PM FPU LD/ST ISSUES
Number of FPU loads and stores issued by LSU to DU

– POWER3II C0 48
PM FPU EXEC FPSCR FPU
FPU exceeded an FPSCR (count both FPUs)

– POWER3II C0 49
PM FPU0 EXEC FSQRT FPU0
FPU0 executed an FSQRT instruction

– POWER3II C0 50
PM FPU0 EXEC ESTIMATE FPU0
FPU0 executed Estimate instructions, FRSQRTE, FRES

� Counter 2 counts:

– POWER3II C1 0
PM INST CMPL
Number of instructions completed

– POWER3II C1 1
PM CYC
Processor clock cycles

– POWER3II C1 2
PM TB BIT TRANS
Time Base bit transition

– POWER3II C1 3
PM INST DISP
Number of instructions dispatched (Max 4 per cycle)

– POWER3II C1 4
PM SNOOP L2ACC
Snooped operation which accesses L2

– POWER3II C1 5
PM DU0 REQ ADDR XTION DU0
A store address translation was requested from DU0

– POWER3II C1 6
PM TAG BURSTRD L2MISS
L2 miss caused by tagged burst read

– POWER3II C1 7
PM FPU IQ FULL
Number of cycles the FPU instruction queue is full

– POWER3II C1 8
PM BR PRED
A conditional branch was predicted

– POWER3II C1 9
PM ST MISS
Store miss occurred in L1

– POWER3II C1 10
PM LD MISS EXCEED L2
Thresholder counting a tagged load (with L2 intervention)

– POWER3II C1 11
PM L2ACC BY RWITM
RWITM caused an L2 access

75

– POWER3II C1 12
PM ST MISS EXCEED L2
Store data cache misses that exceeded threshold with lateral L2 cache intervention

– POWER3II C1 13
PM ST COND FAIL
Store conditional (stcx) instruction failed

– POWER3II C1 14
PM CI STORE WAIT CI STORE
Number of cycles a cache-inhibited store waited on a cache-inhibited store

– POWER3II C1 15
PM CHAIN 2 TO 1
Chain counter History Mode with PMC2[msb] chained to PMC1[lsb]

– POWER3II C1 16
PM TAG BURSTRD L2MISS W INT
Tagged L2 burst read miss and another processor has a modified copy

– POWER3II C1 17
PM FXU2 IDLE
FXU2 idle

– POWER3II C1 18
PM SC INST
Number of system calls

– POWER3II C1 19
PM DSLB MISS
D-cache SLB miss occurred

– POWER3II C1 20
PM 2CASTOUT BF
Number of cycles 2 and only 2 store buffers are occupied

– POWER3II C1 21
PM BIU LD NORTRY
Master generated load operation is not retried

– POWER3II C1 22
PM RESRV RQ
Number of larx executed (non speculative)

– POWER3II C1 23
PM SNOOP E TO S
Number of snoop-based L2 transitions from E to S

– POWER3II C1 25
PM IBUF EMPTY
Instruction buffer empty this cycle

– POWER3II C1 26
PM SYNC CYC
Number of cycles a sync instruction is at the bottom of the completion buffer

– POWER3II C1 27
PM TLBSYNC CYC
Number of cycles a tlbsync instruction is at the bottom of the completion buffer

– POWER3II C1 28
PM DC PREF L2 INV
Number of D-cache lines invalidated in L2 due to a prefetch load data

– POWER3II C1 29
PM DC PREF FILT 1STR
Number of cycles D-cache prefetch filter has 1 and only 1 stream entry

– POWER3II C1 30
PM ST CI PREGATH
Number of I=1 stores (before gathering)

76

– POWER3II C1 31
PM ST GATH HW
Number of store halfword gathered

– POWER3II C1 32
PM LD WT ADDR CONF
Number of cycles load stalls due to interleave conflict

– POWER3II C1 33
PM TAG LD DATA RECV
LSU1 received data from memory side

– POWER3II C1 34
PM FPU1 DENORM
FPU1 received denormalized data

– POWER3II C1 35
PM FPU1 CMPL
FPU1 produced a result

– POWER3II C1 36
PM FPU FEST
FPU executed Estimate instructions FRSQRTE, FRES (count both FPUs)

– POWER3II C1 37
PM FPU LD
Number of FPU loads issued by the LSU to the DU

– POWER3II C1 38
PM FPU0 FDIV
FPU0 executed a divide

– POWER3II C1 39
PM FPU0 FPSCR
FPU0 executed an FPSCR

� Counter 3 counts:

– POWER3II C2 0
PM IC MISS USED
An icache miss line was brought in and used

– POWER3II C2 1
PM CYC
Processor clock cycles

– POWER3II C2 2
PM INST CMPL
Number of instructions completed per cycle

– POWER3II C2 3
PM TB BIT TRANS
Selected Time Base outputs

– POWER3II C2 4
PM INST DISP
Number of instructions dispatched (max. 4 per cycle)

– POWER3II C2 5
PM LD MISS L1
A load miss occured in L1

– POWER3II C2 6
PM TAG ST L2MISS
Tagged RWITM caused L2 miss

– POWER3II C2 7
PM BRQ FILLED CYC
Number of cycles the branch queue is full

– POWER3II C2 8
PM TAG ST L2MISS W INT
Tagged L2 RWITM miss, another processor has a modified copy

77

– POWER3II C2 9
PM ST CMPL
Number of store instructions completed

– POWER3II C2 10
PM TAG ST CMPL
Number of tagged stores completed

– POWER3II C2 11
PM LD NEXT
LOad instruction is at the bottom of the completion buffer

– POWER3II C2 12
PM ST L2MISS
RWITM caused L2 miss

– POWER3II C2 13
PM TAG BURSTRD L2ACC
Tagged burst read caused L2 access

– POWER3II C2 14
PM CI ST WT CI ST
Number of cycles a cache-inhibited store waited on a cache-inhibited store

– POWER3II C2 15
PM CHAIN 3 TO 2
Chain counter History Mode with PMC3[msb] chanied to PMC2[lsb]

– POWER3II C2 16
PM UNALIGNED ST
Number of unaligned stores (one occurence per valid unaligned store AGEN)

– POWER3II C2 17
PM CORE ST N COPYBACK
Number of all core-originated stores and copybacks

– POWER3II C2 18
PM SYNC RERUN
Number of sync rerun operations initiated by the master

– POWER3II C2 19
PM 3CASTOUT BF
Number of cycles 3 and only 3 store buffers are occupied

– POWER3II C2 20
PM BIU RETRY DU LOST RES
Number of time BIU sends a retry but DU already lost reservation (I=1 only)

– POWER3II C2 21
PM SNOOP L2 E OR S TO I
Number of snoop-based L2 transitions from E or S to I

– POWER3II C2 22
PM FPU FDIV
FPU divides executed (count both FPUs)

– POWER3II C2 24
PM IO INTERPT
Number of I/O interrupts detected

– POWER3II C2 25
PM DC PREF HIT
Number of D-cache prefetch request and data in prefetch buffer

– POWER3II C2 26
PM DC PREF FILT 2STR
Number of cycles D-cache prefetch filter has 2 and only 2 stream entries

– POWER3II C2 27
PM PREF MATCH DEM MISS
Prefetch matches a demand miss

78

– POWER3II C2 28
PM LSU1 IDLE
LSU1 idle

� Counter 4 counts:

– POWER3II C3 1
PM CYC
Processor clock cycles

– POWER3II C3 2
PM INST CMPL
Number of instructions completed

– POWER3II C3 3
PM TB BIT TRANS
Selected Time Base outputs

– POWER3II C3 4
PM INST DISP
Number of instructions dispatched (Max 4 per cycle)

– POWER3II C3 5
PM LD CMPL
Number of load instructions completed (max 4 per cycle)

– POWER3II C3 6
PM FPU0 DENORM
FPU0 received denormalized data

– POWER3II C3 7
PM TAG LD DC
LSU0 issued a tagged load request to D-cache

– POWER3II C3 8
PM TAG ST L2ACC
Tagged RWITM caused L2 access

– POWER3II C3 9
PM LSU0 LD DATA
LSU0 received data from memory side (L1/L2/6xx)

– POWER3II C3 10
PM ST L2MISS W INT
L2 RWITM miss, another processor has modified copy

– POWER3II C3 11
PM SYNC
Sync request was made to the BIU

– POWER3II C3 13
PM FXU2 BUSY
FXU2 was busy executing an instruction

– POWER3II C3 14
PM BIU ST NORTRY
Master generated store operation is not retried

– POWER3II C3 15
PM CHAIN 4 TO 3
Chain counter History Mode with PMC4[msb] chained to PMC3[lsb]

– POWER3II C3 16
PM DC ALIAS HIT
ECAM/RCAM logic detected an aliased hit

– POWER3II C3 17
PM FXU1 IDLE
FXU1 idle

– POWER3II C3 18
PM UNALIGNED LD
Number of unaligned loads (one occurence per valid load AGEN)

79

– POWER3II C3 19
PM CMPLU WT LD
Completion unit is stalled on load operations

– POWER3II C3 20
PM BIU ARI RTRY
A master-generated Bus operation received an ARespIn (ARI) retry

– POWER3II C3 21
PM FPU FSQRT
Number of FPU FSQRT executed (count both FPUs)

– POWER3II C3 22
PM BR CMPL
Branch completed

– POWER3II C3 23
PM DISP BF EMPTY
Dispatch buffer is empty this cycle

– POWER3II C3 24
PM LNK REG STACK ERR
Link register stack error

– POWER3II C3 25
PM CRLU PROD RES
CR logical unit produced a result

– POWER3II C3 26
PM TLBSYNC RERUN
Number of tlbsync rerun operations initiated by the master

– POWER3II C3 27
PM SNOOP L2 M TO E OR S
Number of snoop-based L2 transition from M to E or S

– POWER3II C3 29
PM DEM FETCH WT PREF
Number of demand fetch blocked by outstanding prefetch

– POWER3II C3 30
PM FPU0 EXEC FRSP/FCONV
FPU0 executed FRSP or FCONV

� Counter 5 counts:

– POWER3II C4 1
PM IC HIT
The IC was accessed and a block was fetched

– POWER3II C4 2
PM 0INST CMPL
No instructions were completed

– POWER3II C4 3
PM FPU DENORM
FPU sent denormalized data (count both FPUs)

– POWER3II C4 4
PM BURSTRD L2ACC
Burst read caused L2 access

– POWER3II C4 5
PM FPU0 CMPL
FPU0 produced a result

– POWER3II C4 6
PM LSU IDLE
LSU idle (count both LSUs)

– POWER3II C4 7
PM BTAC HITS
Number of hits in the BTAC

80

– POWER3II C4 8
PM STQ FULL
Store queue is full

– POWER3II C4 9
PM BIU WT ST BF
A master-generated store operation is stalled waiting for a store buffer

– POWER3II C4 10
PM SNOOP L2 M TO I
Number of snoop-based L2 transitions from M to I

– POWER3II C4 11
PM FRSP/FCONV EXEC
Float FRSP or FCONV executed (count both FPUs)

– POWER3II C4 12
PM CYC
Processor clock cycles

– POWER3II C4 13
PM BIU ASI RTRY
A master-generated bus operation received a AStatIn (ASI) Retry

– POWER3II C4 15
PM CHAIN 5 TO 4
Chain Counter History mode with PMC5[msb] chained to PMC4[lsb]

– POWER3II C4 16
PM DC REQ HIT PREF BUF
Number of D-cache request hit on prefetch buffer

– POWER3II C4 17
PM DC PREF FILT 3STR
Number of cycles D-cache prefetch filter has 3 and only 3 stream entries

– POWER3II C4 18
PM 3MISS
Number of cycles D-cache with 3 and only 3 outstanding misses

– POWER3II C4 19
PM ST GATH WORD
Number of Word gathered (store)

– POWER3II C4 20
PM LD WT ST CONF
Number of cycles load stalls due to store conflict

– POWER3II C4 21
PM LSU1 ISS TAG ST
LSU1 issued a tagged store request to D-cache

– POWER3II C4 22
PM FPU1 BUSY
FPU1 was busy

– POWER3II C4 23
PM FPU0 FMOV FEST
FPU0 executed MOVE, or EST, or FSEL

– POWER3II C4 24
PM 4CASTOUT BUF
Number of cycles 4 and only 4 castout push buffers used

� Counter 6 counts:

– POWER3II C5 0
PM DSLB MISS
D-cache SLB miss occured

– POWER3II C5 1
PM ST L1HIT
A store hit occured in L1

81

– POWER3II C5 2
PM FXU2 PROD RESULT
FXU2 produced a result

– POWER3II C5 3
PM BTAC MISS
A BTAC miss was detected

– POWER3II C5 5
PM CBR DISP
A conditional branch was dispatched

– POWER3II C5 6
PM LQ FULL
Miss (load) queue is full

– POWER3II C5 7
PM 6XXBUS CMPL LOAD
Instrunction load op completed on 6XX bus and bus op to receive instruction

– POWER3II C5 8
PM SNOOP PUSH INT
Number of snoop pushes and interventions

– POWER3II C5 9
PM EE OFF EXT INT MSR
EE bit os off and an external interrupt is pending

– POWER3II C5 10
PM BIU LD RTRY
A master generated load operation is retried

– POWER3II C5 11
PM FPU EXE FCMP
Float FCMP executed (count both FPUs)

– POWER3II C5 12
PM CYC
Processor clock cycles

– POWER3II C5 13
PM DC PREF BF INV
Number of D-cache prefetch buffer invalidates

– POWER3II C5 14
PM DC PREF FILT 4STR
Number of cycles D-cache prefetch filter has 4 and only 4 stream entries

– POWER3II C5 15
PM CHAIN 6 TO 5
Chain counter History Mode with PMC6[msb] chained to PMC5[lsb]

– POWER3II C5 16
PM 1MISS
Number of cycles with 1 and only 1 outstanding miss

– POWER3II C5 17
PM ST GATH DW
Number of Doubleword gathered (stored)

– POWER3II C5 18
PM LSU1 ISS TAG LD LSU1
LSU1 issued a tagged load request to D-cache

– POWER3II C5 19
PM FPU1 IDLE
FPU1 idle

– POWER3II C5 20
PM FPU0 FMA
FPU0 executed a Multiply-Add

82

– POWER3II C5 21
PM SNOOP PUSH BUF
Number of cycles snoop push buffer used

� Counter 7 counts:

– POWER3II C6 0
PM IC MISS
L1 I-cache misses

– POWER3II C6 1
PM FXU0 PROD RESULT
FXU0 produced a result

– POWER3II C6 2
PM BR DISP
Instrs dispatched to the branch unit

– POWER3II C6 3
PM MPRED BR CAUSED GC
Global cancel due to branch guessed wrong

– POWER3II C6 4
PM SNOOP
Snoop requests received

– POWER3II C6 6
PM 0INST DISP
No instructions were dipatched

– POWER3II C6 7
PM FXU IDLE
Number of cycles the FXU units are idle

– POWER3II C6 8
PM 6XX RTRY CHNG TRTP
Bus retried transaction that change transaction type

– POWER3II C6 9
PM EXEC FMA
Float Multiply-Adds executed (count both FPUs)

– POWER3II C6 10
PM ST DISP
Number of store instructions were dispatched

– POWER3II C6 11
PM CYC
Processor clock cycles

– POWER3II C6 12
PM TLBSYNC CMPLBF
Number of cycles a tlbsync instruction is at the bottom of the completion buffer

– POWER3II C6 14
PM DC PREF L2HIT
Number of D-cache prefetch request and data in L2

– POWER3II C6 15
PM CHAIN 7 TO 6
Chain Counter History Mode with PMC7[msb] chained to PMC6[lsb]

– POWER3II C6 16
PM DC PREF BLOCK DEMAND MISS
Number of cycles demand miss blocked with 1 or more prefetches outstanding

– POWER3II C6 17
PM 2MISS
Number of cycles with 2 and only 2 outstanding misses

– POWER3II C6 18
PM DC PREF USED
Number of D-cache prefetch and used

83

– POWER3II C6 19
PM LSU WT SNOOP BUSY
Number of cycles load/store stall due to snoop busy

– POWER3II C6 20
PM IC PREF USED
Number of I prefetch miss in progress changed to a normal, non-prefetch

– POWER3II C6 22
PM FPU0 FADD FCMP GMUL
FPU0 executed an Add, Compare, Multiply, Subtract

– POWER3II C6 23
PM 1WT THRU BUF USED
Number of cycles 1 write-through buffer used

� Counter 8 counts:

– POWER3II C7 0
PM TLB MISS
TLB misses. Includes both D-cache and I-cache misses

– POWER3II C7 1
PM SNOOP L2HIT
Snoop hit occured and L2 has the valid block

– POWER3II C7 2
PM BURSTRD L2MISS
A burst read caused L2 miss

– POWER3II C7 3
PM RESRV CMPL
Store conditional (stcx) instruction executed successfully

– POWER3II C7 4
PM FXU1 PROD RESULT
FXU1 produced a result

– POWER3II C7 5
PM RETRY BUS OP
Retry 6xx bus operation

– POWER3II C7 6
PM FPU IDLE
FPU idle (count both FPUs)

– POWER3II C7 7
PM FETCH CORR AT DISPATCH
Fetch corrections made at dispatch stage

– POWER3II C7 8
PM CMPLU WT ST
Completion unit is stalled on store operations

– POWER3II C7 9
PM FPU FADD FMUL
Float Add, Multiply, Subtract executed (count both FPUs)

– POWER3II C7 10
PM LD DISP
Number of load instructions dispatched (lm and lst counted as 1)

– POWER3II C7 11
PM ALIGN INT
An alignment interrupt was executed

– POWER3II C7 12
PM CYC
Processor clock cycles

– POWER3II C7 13
PM SYNC CMPL BF CYC
Number of cycles a sync instruction is at the bottom of the completion buffer

84

– POWER3II C7 14
PM 2WT THRU NUF USED
Number of cycles 2 write-through buffer used

– POWER3II C7 15
PM CHAIN 8 TO 7
Chain counter History Mode with PMC8[msb] chained to PMC6[lsb]

85

A.5 Intel Pentium Family

A.5.1 Intel Pentium

The Intel Pentium is a 32-bit CISC microprocessor. The Pentium has 2 performance counters with most of
the events countable by either of the counters and only some events countable only by a specific counter
(as noted). With the introduction of the MMX-extensions, Pentium’s with MMX have defined more events
as stated (MMX-extensions). We have left out all events which are specific to the MMX functional unit as
compilers normally do not generate code for this unit. The performance counters are 40 bit wide, the time
stamp counter is 64 bit wide.
The Time Stamp Counter counts the elapsed machine cycles:

� Pentium TSC
elapsed machine cycles

The events countable by both counters are:

� Pentium 0
00H DATA READ
Number of memory data read operations.

� Pentium 1
01H DATA WRITE
Number of memory data write operations.

� Pentium 2
02H DATA TLB MISS
Number of misses to the data cache translation look-aside buffer.

� Pentium 3
03H DATA READ MISS
Number of memory read accesses that miss the internal data cache.

� Pentium 4
04H DATA WRITE MISS
Number of memory write accesses that miss the internal data cache.

� Pentium 5
05H WRITE HIT TO M- OR E-STATE LINES
Number of write hits to exclusive or modified lines in the data cache.

� Pentium 6
06H DATA CACHE LINES WRITTEN BACK
Number of dirty lines that are written back.

� Pentium 7
07H EXTERNAL SNOOPS
Number of accepted external snoops.

� Pentium 8
08H EXTERNAL DATA CACHE SNOOP HITS
Number of external snoops to the data cache.

� Pentium 9
09H MEMORY ACCESSES IN BOTH PIPES
Number of data memory reads or writes that are paired in both pipes of the pipeline.

� Pentium 10
0AH BANK CONFLICTS
Number of actual bank conflicts.

� Pentium 11
0BH MISALIGNED DATA MEMORY OR I/O REFERENCES
Number of memory or I/O reads or writes that are misaligned.

86

� Pentium 12
0CH CODE READ
Number of instruction reads.

� Pentium 13
0DH CODE TLB MISS
Number of instruction reads that miss the code TLB.

� Pentium 14
0EH CODE CACHE MISS
Number of instruction reads that miss the internal code cache.

� Pentium 15
0FH ANY SEGMENT REGISTER LOADED
Number of writes into any segment register in real or protected mode.

� Pentium 16
12H Branches
Number of taken or not taken branches, including conditional branches, jumps, calls, returns, soft-
ware interrupts, and interrupt returns.

� Pentium 17
13H BTB HITS
Number of BTB hits that occur.

� Pentium 18
14H TAKEN BRANCH OR BTB HIT
Number of taken branches or BTB hits that occur.

� Pentium 19
15H PIPELINE FLUSHES
Number of pipeline flushes that occur.

� Pentium 20
16H INSTRUCTIONS EXECUTED
Number of instructions executed (up to two per clock).

� Pentium 21
17H INSTRUCTIONS EXECUTED VPIPE
Number of instructions executed in the V pipe. It indicated the number of instructions that were
paired.

� Pentium 22
18H BUS CYCLE DURATION
Number of clocks while a bus cycle is in progress. This event measures bus use.

� Pentium 23
19H WRITE BUFFER FULL STALL DURATION
Number of clocks while the pipeline is stalled due to full write buffers.

� Pentium 24
1AH WAITING FOR DATA MEMORY READ STALL DURATION
Number of clocks while the pipeline is stalled while waiting for data memory reads.

� Pentium 25
1BH STALL ON WRITE TO AN E- OR M-STATE LINE
Number of stalls on writes to E- or M-state lines..

� Pentium 26
1CH LOCKED BUS CYCLE
Number of locked bus cycles that occur as the result of the LOCK prefix or LOCK instruction, page-
table updates, and descriptor table updates.

� Pentium 27
1DH I/O READ OR WRITE CYCLE
Number of bus cycles directed to I/O space.

87

� Pentium 28
1EH NONCACHEABLE MEMORY READS
Number of non-cacheable instruction or data memory read bus cycles.

� Pentium 29
1FH PIPELINE AGI STALLS
Number of address generation interlock (AGI) stalls.

� Pentium 30
22H FLOPS
Number of floating-point operations that occur. Transcendental instructions consist of multiple adds
and multiplies and will signal this event multiple times. Instructions generating the divide-by-zero,
negative square root, special operand, or stack exceptions will not be counted. Instructions generat-
ing all other floating-point exceptions will be counted. The integer multiply instructions and other
instructions which use the FPU will be counted.

� Pentium 31
23H BREAKPOINT MATCH ON DR0 REGISTER
Number of matches on register DR0 breakpoint.

� Pentium 32
24H BREAKPOINT MATCH ON DR1 REGISTER
Number of matches on register DR1 breakpoint.

� Pentium 33
25H BREAKPOINT MATCH ON DR2 REGISTER
Number of matches on register DR2 breakpoint.

� Pentium 34
26H BREAKPOINT MATCH ON DR3 REGISTER
Number of matches on register DR3 breakpoint.

� Pentium 35
27H HARDWARE INTERRUPTS
Number of taken INTR and NMI interrupts.

� Pentium 36
28H DATA READ OR WRITE
Number of memory data reads and/or writes.

� Pentium 37
29H DATA READ MISS OR WRITE MISS
Number of memory read and/or write accesses that miss the internal data cache.

� Counter-specific events:

– Specific to counter 0:
= Pentium C0 0

2AH BUS OWNERSHIP LATENCY
The time from LRM bus ownership request to bus ownership granted (MMX extension).

= Pentium C0 1
2CH CACHE M-STATE LINE SHARING
Number of times a processor identified a hit to a modified line due to a memory access in
the other processor (MMX extension).

= Pentium C0 2
2DH EMMS INSTRUCTIONS EXECUTED
Number of EMMS instructions executed (MMX extension).

= Pentium C0 3
2EH BUS UTILIZATION DUE TO PROCESSOR ACTIVITY
Number of clocks the bus is busy due to the processor’s own activity (MMX extension).

= Pentium C0 4
30H NUMBER OF CYCLES NOT IN HALT STATE
Number of cycles the processor is not idle due to HLT instruction (MMX extension).

88

= Pentium C0 5
32H FLOATING POINT STALLS DURATION
Number of clocks while pipe is stalled due to a floating-point freeze (MMX extension).

= Pentium C0 6
33H D1 STARVATION AND FIFO IS EMPTY
Number of times D1 stage cannot issue ANY instructions since the FIFO buffer is empty
(MMX extension).

= Pentium C0 7
35H PIPELINE FLUSHES DUE TO WRONG BRANCH PREDICTIONS
Number of pipeline flushes due to wrong branch predictions resolved in either the E-stage
or the WB-stage (MMX extension).

= Pentium C0 8
37H MISPREDICTED OR UNPREDICTED RETURNS
Number of returns predicted incorrectly or not predicted at all (MMX extension).

= Pentium C0 9
39H RETURNS
Number of returns executed (MMX extension).

= Pentium C0 10
3AH BTB FALSE ENTRIES
Number of false entries in the Branch Target Buffer (MMX extension).

– Specific to counter 1:
= Pentium C1 0

2AH BUS OWNERSHIP TRANSFERS
Number of bus ownership transfers (MMX extension).

= Pentium C1 1
2CH CACHE LINE SHARING
Number of shared data lines in the L1 cache (MMX extension).

= Pentium C1 2
2EH WRITES TO NONCACHEABLE MEMORY
Number of write accesses to non-cacheable memory (MMX extension).

= Pentium C1 3
30H DATA CACHE TLB MISS STALL DURATION
Number of clocks the pipeline is stalled due to a data cache translation look-aside buffer
miss (MMX extension).

= Pentium C1 4
31H TAKEN BRANCHES
Number of branches taken (MMX extension).

= Pentium C1 5
33H D1 STARVATION AND ONLY ONE INSTRUCTION IN FIFO
Number of times the D1 stage issues just a single instruction since the FIFO buffer had just
one instruction ready (MMX extension).

= Pentium C1 6
35H PIPELINE FLUSHES DUE TO WRONG BRANCH PREDICTIONS RESOLVED IN WB-
STAGE
Number of pipeline flushes due to wrong branch predictions resolved in the WB-stage
(MMX extension).

= Pentium C1 7
37H PREDICTED RETURNS
Number of predicted returns (MMX extension).

= Pentium C1 8
3AH BTB MISS PREDICTION ON NOT TAKEN BRANCH
Number of times the BTB predicted a not-taken branch as taken (MMX extension).

By default, the instructions RDMSR and WRMSR to access the performance counter registers are kernel-
mode instructions (ring 0).
In [12] are software tools concerning the performance counters on Pentium-like processors described. On
Linux systems, libpperf is available to access the performance counters. It was written by M. Patrick Goda
and Michael S. Warren from Los Alamos National Laboratory. libpperf itself is based on the msr device
implemented by Stephan Meyer for Linux 2.0.x and 2.1.x.

89

Mikael Pettersson has written a kernel patch for all recent kernel versions and a user library to access
performance counters on Intel IA32-processors (see here) for the package.

A.5.2 Intel PentiumPro/Pentium II/Pentium III

To keep binary compatibility with the predecessor processors, the PentiumPro, Pentium II, and Pentium III
have 8 registers, 32 bit width each. First level cache is 8 KB for instructions (ICache) and 8 KB for data
(DCache) on PentiumPro, and 16 KB for both caches on Pentium II and Pentium III. As the PentiumPro,
Pentium II, and Pentium III are CISC-microprocessors (complex instruction set computer), every instruction
is divided internally into micro-operations (UOP’s) of fixed length. Dependent on the complexity of the
instruction, the instruction is divided into 1-4 UOP’s.
The PentiumPro, Pentium II, and Pentium III has 2 performance counters capable of counting a total of 77
different events (at most two at a time), some of them with an additional unit mask as parameter to further
subdivide the event type. Some of the events are countable only by a specific counter. The Pentium III
has 4 additional events concerning Streaming SIMD Extensions. Performancxe counter registers are 40 bit
wide, the time stamp counter is 64 bit wide. With special instructions it is possible to write values into the
performance counter registers (WRMSR). Care has to be taken as this instruction writes only the lower 32
bits, the upper 8 bits are sign extended from bit 31. For the time stamp counter, the upper 8 bits are set to 0.
The Time Stamp Counter counts the elapsed machine cycles:

� PPro TSC
elapsed machine cycles

The events countable by both performance counters are:

� PPro 0
43H DATA MEM REFS
All memory references, both cacheable and non-cacheable.

� PPro 1
45H DCU LINES IN
Number of allocated lines in the 1st level data cache.

� PPro 2
46H DCU M LINES IN
Number of allocated lines in the 1st level data cache which have the status modified.

� PPro 3
47H DCU M LINES OUT
Number of evicted lines in the 1st level data cache which were marked as modified.

� PPro 4
48H DCU MISS OUTSTANDING
Weighted number of cycles while a 1st level data cache miss is outstanding. An access that also misses
the L2 is short-changed by 2 cycles. (i.e. if counts N cycles, should be N+2 cycles.) Subsequent loads
to the same cache line will not result in any additional counts. Count value not precise, but still useful.

� PPro 5
80H IFU IFETCH
Number of 1st level instruction cache loads.

� PPro 6
81H IFU IFETCH MISS
Number of 1st level instruction cache misses.

� PPro 7
85H ITLB MISS
Number of instruction transfer look-aside buffer misses.

� PPro 8
86H IFU MEM STALL
Number of cycles in which the instruction fetch pipe stage is stalled.

� PPro 9
87H ILD STALL
Number of cycles the instruction length decoder is stalled.

90

� PPro 10
28H L2 IFETCH
Number of instruction fetches from the 2nd level cache.

� PPro 11
29H L2 LD
Number of data loads from the 2nd level cache.

� PPro 12
2AH L2 ST
Number of data stores to the 2nd level cache.

� PPro 13
24H L2 LINES IN
Number of lines allocated in the 2nd level cache.

� PPro 14
26H L2 LINES OUT
Number of cache lines removed from the 2nd level cache.

� PPro 15
25H L2 M LINES INM
Number of allocated cache lines in the 2nd level cache which have been modified.

� PPro 16
27H L2 M LINES OUTM
Number of modified cache lines in the 2nd level cache which have been removed.

� PPro 17
2EH L2 RQSTS Number of requests to the 2nd level cache.

� PPro 18
21H L2 ADS
Number of address strobes at 2nd level cache address bus.

� PPro 19
22H L2 DBUS BUSY
Number of cycles during which the data bus was busy.

� PPro 20
23H L2 DBUS BUSY RD
Number of cycles during which the data bus was busy transferring data from 2nd level cache to the
processor.

� PPro 21
62H BUS DRDY CLOCKS
Number of cycles the DRDY-signal was active.

� PPro 22
63H BUS LOCK CLOCKS
Number of processor clock cycles during which the LOCK-signal is asserted.

� PPro 23
60H BUS REQ OUTSTANDING
Number of outstanding bus requests which either result out from a cacheable read request of 1st level
data cache lines or a to be completed bus operation.

� PPro 24
65H BUS TRAN BRD
Number of burst read transactions.

� PPro 25
66H BUS TRAN RFO
Number of read for ownership transactions.

91

� PPro 26
67H BUS TRANS WB
Number of write back transactions.

� PPro 27
68H BUS TRAN IFETCH
Number of completed instruction fetch transactions.

� PPro 28
69H BUS TRAN INVAL
Number of completed bus invalidate transactions.

� PPro 29
6AH BUS TRAN PWR
Number of completed partial write transactions.

� PPro 30
6BH BUS TRANS P
Number of completed partial transactions.

� PPro 31
6CH BUS TRANS IO
Number of completed I/O transactions.

� PPro 32
6DH BUS TRAN DEF
Number of completed deferred transactions.

� PPro 33
6EH BUS TRAN BURST
Number of completed burst transactions.

� PPro 34
70H BUS TRAN ANY
Number of all completed transactions.

� PPro 35
6FH BUS TRAN MEM
Number of completed memory transactions.

� PPro 36
64H BUS DATA RCV
Number of bus clock cycles during which this processor is receiving data.

� PPro 37
61H BUS BNR DRV
Number of bus clock cycles during which this processor is driving the BNR pin.

� PPro 38
7AH BUS HIT DRV
Number of bus clock cycles during which this processor is driving the HIT pin including cycles due
to snoop stalls.

� PPro 39
7BH BUS HITM DRV
Number of bus clock cycles during which this processor is driving the HITM pin including cycles
due to snoop stalls.

� PPro 40
7EH BUS SNOOP STALL
Number of clock cycles during which the bus is snoop stalled.

� PPro 41
03H LD BLOCKS
Number of store buffer locks.

92

� PPro 42
04H SB DRAINS
Number of cycles in which the store buffer blocks.

� PPro 43
05H MISALIGN MEM REF
Number of misaligned data memory references.

� PPro 44
C0H INST RETIRED
Number of instructions retired.

� PPro 45
C2H UOPS RETIRED
Number of micro-operations retired.

� PPro 46
D0H INST DECODER
Number of instructions decoded and translated to UOP’s.

� PPro 47
C8H HW INT RX
Number of hardware interrupts received.

� PPro 48
C6H CYCLES INT MASKED
Number of processor cycles for which interrupts are disabled.

� PPro 49
C7H CYCLES INT PENDIND AND MASKED
Number of ptrocessor cycles for which interrupts are disabled and interrupts are pending.

� PPro 50
C4H BR INST RETIRED
Number of branch instructions retired.

� PPro 51
C5H BR MISS PRED RETIRED
Number of completed but mispredicted branches.

� PPro 52
C9H BR TAKEN RETIRED
Number of completed taken branches.

� PPro 53
CAH BR MISS PRED TAKEN RET
Number of completed taken, but mispredicted branches.

� PPro 54
E0H BR INST DECODED
Number of decoded branch instructions.

� PPro 55
E2H BTB MISSES
Number of branches that missed the BTB.

� PPro 56
E4H BR BOGUS
Number of bogus branches.

� PPro 57
E6H BACLEARS
Number of times BACLEAR-signal is asserted.

� PPro 58
A2H RESOURCE STALLS
Number of cycles during which there are resource related stalls.

93

� PPro 59
D2H PARTIAL RAT STALLS
Number of cycles or events for partial stalls.

� PPro 60
06H SEGMENT REG LOADS
Number of segment register loads.

� PPro 61
79H CPU CLK UNHALTED
Number of cycles during which the processor is not halted.

� PPro 62
B0H MMX INSTR EXEC
Number of MMX-instructions executed.

� PPro 63
B3H MMX INSTR TYPE EXEC
Number of MMX-instructions executed. The further parameter unit mask specifies which category
should be counted.

� PPro 64
B1H MMX SAT INSTR EXEC
MMX saturated instructions executed.

� PPro 65
B2H MMX uOPS EXEC
Number of MMX uops executed.

� PPro 66
CCH FP MMX TRANS
Transitions from MMX instructions to FP instructions.

� PPro 67
CDH MMX ASSIST
Number of MMX assists (EMMS instructions executed).

� PPro 68
CEH MMX INSTR RET
Number of MMX instructions retired.

� PPro 69
D4H SEG RENAME STALLS
Segment register renaming stalls.

� PPro 70
D5H SEG REG RENAMES
Segment registers renamed.

� PPro 71
D6H RET SEG RENAMES
Number of segement register rename events retired.

� PPro 72
D8H EMON SSE INST RETIRED
Number of Streaming SIMD extensions retired.

� PPro 73
D9H EMON SSE COMP INST RET
Number of Streaming SIMD Extensions computation instructions retired.

� PPro 74
07H EMON SSE PRE DISPATCHED
Number of prefetch/weakly ordered instructios dispatched (inclusive speculative prefetches).

94

� PPro 75
4BH EMON SSE PRE MISS
Number of prefetch/weakly-ordered instructions that miss all caches.

� Counter-specific events:

– Specific to counter 0:
= PPro C0 0

C1H FLOPS
Number of retired floating point instructions.

= PPro C0 1
10H FP COMP OPS EXE
Number of floating point operations started (but which may not have been all completed.)

= PPro C0 2
14H CYCLES DIV BUSY
Number of cycles during which the divider is busy.

– Specific to counter 1:
= PP1 0

11H FP ASSIST
Number of floating-point exception cases handled by microcode.

= PP1 1
12H MUL
Number of multiplies (integer and floating-point).

= PP1 2
13H DIV
Number of divides (integer and floating-point).

All of the events can be counted on PentiumPro as well as on Pentium II and Pentium III. The Pentium II
and Pentium III have additional events defined mainly for MMX-extensions [13].
The same remarks as stated above in the Pentium-section concerning software environments apply to the
Pentium Pro, Pentium II, and Pentium III as well.

A.5.3 Intel Pentium 4

The performance monitoring mechanism provided in the Intel Pentium 4 processors is considerably differ-
ent from that provided in the P6 family and Pentium processors (and all other microprocessors). The setup
mechanism and MSR layouts are different and incompatible with the P6 family and Pentium processor
mechanism.
There are 3 types of registers relevant fpr performance counting:

� 45 ESCR (Event Selection Control Register) for selecting events to be monitored by speficic perfor-
mance counters. Each ESCR is usually associated with a pair of PMC.

� 18 PMC (Performance Counter) organized in 9 pairs.

� 18 CCCR (Counter Configuration Contro Register) with one CCCR accociated with each perfor-
mance counter

The performance counters in conjunction with the counter configuration control registers (CCCRs) are used
for filtering and counting the events selected by the ESCRs. The Pentium 4 and Intel Xeon processors
provide 18 performance counters organized into 9 pairs. A pair of performance counters is associated with
a particular subset of events and ESCR’s. Each performance counter is 40-bits wide.
The counter pairs are partitioned into four groups:

� The BPU group, includes two performance counter pairs:
MSR BPU COUNTER0 and MSR BPU COUNTER1
MSR BPU COUNTER2 and MSR BPU COUNTER3

� The MS group, includes two performance counter pairs:
MSR MS COUNTER0 and MSR MS COUNTER1
MSR MS COUNTER2 and MSR MS COUNTER3

95

� The FLAME group, includes two performance counter pairs:
MSR FLAME COUNTER0 and MSR FLAME COUNTER1
MSR FLAME COUNTER2 and MSR FLAME COUNTER3

� The IQ group, includes three performance counter pairs:
MSR IQ COUNTER0 and MSR IQ COUNTER1
MSR IQ COUNTER2 and MSR IQ COUNTER3
MSR IQ COUNTER4 and MSR IQ COUNTER5

The Time Stamp Counter counts the elapsed machine cycles:
� P4 TSC

elapsed machine cycles

The Pentium 4 has 18 performance counters. The following list shows all measurable events. Each event
can only be measured on specific counter pairs, which belong to a specific counter group. To be consistent
with the numbering scheme we start numbering with P4 CG0 xx for counter group 0.
Some events take more than one counter/CCCR/ESCR. See the Intel manual for the details. Therefore the
1-to-1 mapping of low-level events and counters doesn’t hold for the P4 anymore.
The following short description of an event contains the hexadecimal values for the ESCR event select,
ESCR event mask and the CCCR select (e.g. IOQ allocation: Bus request type 03H (ESCR event select)
01H (ESCR event mask) 06H (CCCR select)). Below the short description a combination of event class
and event name is shown. All events of a class can be combined to a new one. By an addition of the event
mask values you can measure a specific combination of events (e.g. branch retired: If you want to count all
taken branches you have to combine branch taken predicted (04H) and branch taken mispredicted (08H). In
order to activate both events you must write 0CH in the event mask field.).
Counter group 0 (Counter 1/2) is an exception and do not belong to the counter groups above.
Currently, the generic low level driver interface does not work with the P4.

� Counter 1-2 counts:

– Event class: IOQ allocation
This event counts various types of transactions on the bus. A count will be generated each time
a transaction is allocated into the IOQ that matches the specified mask bits. Note that requests
are counted once per retry.
= P4 CG0 0

03H 01H 06H
IOQ allocation: Bus request type

= P4 CG0 1
03H 20H 06H
IOQ allocation: Count read entries

= P4 CG0 2
03H 40H 06H
IOQ allocation: Count write entries

= P4 CG0 3
03H 80H 06H
IOQ allocation: Count UC memory access entries

= P4 CG0 4
03H 100H 06H
IOQ allocation: Count WC memory access entries

= P4 CG0 5
03H 2000H 06H
IOQ allocation: Count all store requests driven by processor, as opposed to other processor
or DMA

= P4 CG0 6
03H 4000H 06H
IOQ allocation: Count all requests driven by other processor or DMA

= P4 CG0 7
03H 8000H 06H
IOQ allocation: Include HW and SW prefetch requests in the count

96

– Event class: BSQ allocation
This event counts allocations in the bus sequence unit (BSQ) according to specified mask bit
encodings.
= P4 CG0 8

05H 00H 07H
BSQ allocation: request type encodings (read)

= P4 CG0 9
05H 01H 07H
BSQ allocation: request type encodings (read invalidate)

= P4 CG0 10
05H 02H 07H
BSQ allocation: request type encodings (write)

= P4 CG0 11
05H 03H 07H
BSQ allocation: request type encodings (writeback)

= P4 CG0 12
05H 00H 07H
BSQ allocation: request length encodings (0 chunks)

= P4 CG0 13
05H 04H 07H
BSQ allocation: request length encodings (1 chunk)

= P4 CG0 14
05H 12H 07H
BSQ allocation: request length encodings (8 chunks)

= P4 CG0 15
05H 200H 07H
BSQ allocation: request type is a demand

= P4 CG0 16
05H 00H 07H
BSQ allocation: memory type encodings (UC)

= P4 CG0 17
05H 800H 07H
BSQ allocation: memory type encodings (USWC)

= P4 CG0 18
05H 2000H 07H
BSQ allocation: memory type encodings (WT)

= P4 CG0 19
05H 2800H 07H
BSQ allocation: memory type encodings (WP)

= P4 CG0 20
05H 3000H 07H
BSQ allocation: memory type encodings (WB)

� Counter 1-4 counts:

– Event class: BPU fetch request
This event counts instruction fetch requests of specified request type by the branch prediction
unit.
= P4 CG1 0

03H 01H 00H
BPU fetch request: Trace cache lookup miss

– Event class: ITLB reference
This event counts translations using the instruction translation lookaside buffer.
= P4 CG1 1

18H 01H 03H
ITLB reference: ITLB hit

= P4 CG1 2
18H 02H 03H
ITLB reference: ITLB miss

97

= P4 CG1 3
18H 04H 03H
ITLB reference: Uncacheable ITLB hit

– Event class: MOB load replay
This event triggers if the memory order buffer caused a load operation to be replayed.
= P4 CG1 4

03H 02H 02H
MOB LOAD replay: Replayed because of unknown store address

= P4 CG1 5
03H 04H 02H
MOB LOAD replay: Replayed because of unknown store data

= P4 CG1 6
03H 08H 02H
MOB LOAD replay: Replayed because of partially overlapped data access between the
load and store operations

= P4 CG1 7
03H 10H 02H
MOB LOAD replay: Replayed because the lower four bits of the linear address do not
match between the load and store operations

– Event class: page walk type
This event counts various types of page walks that the page miss handler (PMH) performs.
= P4 CG1 8

01H 01H 04H
page walk type: Page walk for a data TLB miss (either load or store)

= P4 CG1 9
01H 02H 04H
page walk type: Page walk for an instruction page miss

– Event class: BSQ 2ndL cache reference
This event counts second level cache references as seen by the bus unit.
= P4 CG1 10

0CH 01H 07H
BSQ 2ndL cache reference: Read 2nd level cache hit (shared)

= P4 CG1 11
0CH 02H 07H
BSQ 2ndL cache reference: Read 2nd level cache hit (exclusive)

= P4 CG1 12
0CH 04H 07H
BSQ 2ndL cache reference: Read 2nd level cache hit (modified)

= P4 CG1 13
0CH 100H 07H
BSQ 2ndL cache reference: Read 2nd level cache miss

= P4 CG1 14
0CH 400H 07H
BSQ 2ndL cache reference: Write 2nd level cache miss

– Event class: FSB data activity
This event increments once for each DRDY or DBSY event that occurs on the front side bus.
= P4 CG1 15

17H 01H 06H
FSB data activity: Count DRDY event that we drive

= P4 CG1 16
17H 02H 06H
FSB data activity: Count DRDY event sampled that we own

= P4 CG1 17
17H 04H 06H
FSB data activity: Count DRDY event driven by the chipset or a another processor

98

= P4 CG1 18
17H 08H 06H
FSB data activity: Count DBSY event that we drive

= P4 CG1 19
17H 10H 06H
FSB data activity: Count DBSY event sampled that we own

= P4 CG1 20
17H 20H 06H
FSB data activity: Count DBSY event driven by the chipset or a another processor

� Counter 5-8 counts:

– Event class: TC deliver mode
This event counts the duration (in clock cycles) of the trace cache operating modes.
= P4 CG2 0

01H 04H 01H
TC deliver mode: TC is delivering traces

= P4 CG2 1
01H 20H 01H
TC deliver mode: TC is building traces while encoding instructions

� Counter 9-12 counts:

– Event class: memory cancel
This event counts the canceling of various type of requests the data cache address control unit
(DAC).
= P4 CG3 0

02H 04H 05H
memory cancel: replayed because no store request buffer is available

= P4 CG3 1
02H 80H 05H
memory cancel: replayed due to missing from all onchip caches

– Event class: memory complete
This event counts the completion of a load split, store split, uncacheable split or UC load.
= P4 CG3 2

08H 01H 02H
memory complete: load split completed, excluding UC, WC loads

= P4 CG3 3
08H 02H 02H
memory complete: any split store completed

– Event class: load port replay
This event counts replayed events at the load port.
= P4 CG3 4

04H 02H 02H
load port replay: split load

= P4 CG3 5
05H 02H 02H
load port replay: split store

– Event class: SSE input assist
This event counts the number of times an assist is requestet to handle problems with input
operands for SSE and SSE2 operation.
= P4 CG3 6

34H 8000H 02H
SSE input assist: count assists for all SSE and SSE2 ops

– Event class: packed SP uop
This event increments for each packed single-precision op.

99

= P4 CG3 7
08H 8000H 01H
packed SP uop: count all ops operating on packed single-precision operands

– Event class: packed DP uop
This event increments for each packed double-precision op, specified through the event mask
for detection.
= P4 CG3 8

0CH 8000H 01H
packed DP uop: count all ops operating on packed double-precision operands

– Event class: scalar SP uop
This event increments for each scalar singe-precicion op.
= P4 CG3 9

0AH 8000H 01H
scalar SP uop: count all ops operating on scalar single-precision operands

– Event class: scalar DP uop
This event increments for each scalar double-precicion op.
= P4 CG3 10

0EH 8000H 01H
scalar DP uop: count all ops operating on scalar double-precision operands

– Event class: 64bit MMX uop
This event counts all ops operationg on 64bit SIMD integer operands in memory or MMX
registers.
= P4 CG3 11

02H 8000H 01H
64bit MMX uop: count all ops operating on 64bit SIMD integer operands in memeory or
MMX registers

– Event class: 128bit MMX uop
This event counts all ops operationg on 128bit SIMD integer operands in memory or MMX
registers.
= P4 CG3 12

1AH 8000H 01H
128bit MMX uop: count all ops operating on 128bit SIMD integer operands in memeory
or MMX registers

– Event class: x87 FP uop
This event increments for each x87 floating point op.
= P4 CG3 13

04H 8000H 01H
x87 FP uop: count all x87 floating point ops

– Event class: x87 SIMD moves uop
This event incements for each x87, MMX, SSE or SSE2 op related to load data, store data, or
register-to-register moves.
= P4 CG3 14

2EH 08H 01H
x87 SIMD moves uop: count all x87/SIMD store/moves op

= P4 CG3 15
2EH 10H 01H
x87 SIMD moves uop: count all x87/SIMD load op

� Counter 13-18 counts:

– Event class: branch retired
This event counts the retirement of a branch.
= P4 CG4 0

06H 01H 05H
branch retired: branch not-taken predicted

100

= P4 CG4 1
06H 02H 05H
branch retired: branch not-taken mispredicted

= P4 CG4 2
06H 04H 05H
branch retired: branch taken predicted

= P4 CG4 3
06H 08H 05H
branch retired: branch taken mispredicted

– Event class: mispred branch retired
This event represents the retirement of mispredicted IA32 branch instructions.
= P4 CG4 4

03H 01H 04H
mispred branch retired: the retired instruction is not bogus

– Event class: x87 assist
This event counts the retirement of x87 instruction that required special handling.
= P4 CG4 5

03H 01H 05H
x87 assist: handle FP stack underflow

= P4 CG4 6
03H 02H 05H
x87 assist: handle FP stack overflow

= P4 CG4 7
03H 04H 05H
x87 assist: handle x87 output overflow

= P4 CG4 8
03H 08H 05H
x87 assist: handle x87 output underflow

= P4 CG4 9
03H 10H 05H
x87 assist: handle x87 input assist

– Event class: machine clear
This event increments according to the mask bit specified while the entire pipline of the machine
is cleared.
= P4 CG4 10

02H 01H 05H
machine clear: counts for a portion of the many cycles while the machine is cleared for
any cause

= P4 CG4 11
02H 02H 05H
machine clear: increments each time the machine is cleared due to memory ordering issues

– Event class: front end event
This event counts the retirement of tagged ops which are specified through the front end tagging
mechanism.
= P4 CG4 12

08H 01H 05H
front end event: the marked ops are not bogus

= P4 CG4 13
08H 02H 05H
front end event: the marked ops are bogus

– Event class: execution event
This event counts the retirement of tagged ops which are specified through the execution tagging
mechanism.
= P4 CG4 14

0CH 0FH 05H
execution event: the marked ops are not bogus

101

= P4 CG4 15
0CH F0H 05H
execution event: the marked ops are bogus

– Event class: replay event
This event counts the retirement of tagged ops which are specified through the replay tagging
mechanism.
= P4 CG4 16

09H 01H 05H
replay event: the marked ops are not bogus

= P4 CG4 17
09H 02H 05H
replay event: the marked ops are bogus

– Event class: instr retired
This event counts instructions that are retired during a clock cycle.
= P4 CG4 18

02H 01H 04H
instr retired: Non-bogus instructions that are not tagged

= P4 CG4 19
02H 02H 04H
instr retired: Non-bogus instructions that are tagged

= P4 CG4 20
02H 04H 04H
instr retired: bogus instructions that are not tagged

= P4 CG4 21
02H 08H 04H
instr retired: bogus instructions that are tagged

– Event class: uops retired
This event counts ops that are retired during a clock cycle.
= P4 CG4 22

01H 01H 04H
uops retired: the marked ops are not bogus

= P4 CG4 23
01H 02H 04H
uops retired: the marked ops are bogus

102

A.6 AMD Athlon Family

A.6.1 AMD Athlon

The AMD Athlon is a 32-bit CISC microprocessor. The Athlon has 4 performance counters. The perfor-
mance counters are 48 bit wide, the time stamp counter is 64 bit wide.
The Time Stamp Counter counts the elapsed machine cycles:

� Athlon TSC
elapsed machine cycles

The events countable on all four counters are:

� ATHLON 0
20H
Segment register loads.

� ATHLON 1
21H
Stores to active instruction stream (self-modifying code occurences).

� ATHLON 2
40H
Data cache accesses.

� ATHLON 3
41H
Data cache misses.

� ATHLON 4
42H
Data cache refills from L2.

� ATHLON 5
43H
Data cache refills from system.

� ATHLON 6
44H
Data cache writebacks.

� ATHLON 7
45H
L1 DTLB misses and L2 DTLB hits.

� ATHLON 8
46H
L1 and L2 DTLB misses.

� ATHLON 9
47H
Missaligned data references.

� ATHLON 10
64H
DRAM system requests.

� ATHLON 11
65H
System request with the selected type.

� ATHLON 12
73H
Snoop hits.

103

� ATHLON 13
74H
Single bit ecc errors detected or corrected.

� ATHLON 14
75H
Internal cache line invalidates.

� ATHLON 15
76H
Cycles processor is running.

� ATHLON 16
79H
L2 request.

� ATHLON 17
7AH
Cycles that at least one fill request waited to use the L2.

� ATHLON 18
80H
Instruction cache fetches.

� ATHLON 19
81H
Instruction cache misses.

� ATHLON 20
82H
Instruction cache refills from L2.

� ATHLON 21
83H
Instruction cache refills from system.

� ATHLON 22
84H
L1 ITLB misses and L2 ITLB hits.

� ATHLON 23
85H
L1 and L2 ITLB misses.

� ATHLON 24
86H
Snoop resyncs.

� ATHLON 25
87H
Instruction fetch stall cycles.

� ATHLON 26
88H
Return stack hits.

� ATHLON 27
89H
Return Stack overflow.

� ATHLON 28
C0H
Retired instructions (includes exceptions, interrupts, resyncs).

� ATHLON 29
C1H
Retired Ops.

104

� ATHLON 30
C2H
Retired branches (conditional, unconditional, exceptions, interrupts).

� ATHLON 31
C3H
Retired branches misspredicted.

� ATHLON 32
C4H
Retired taken branches.

� ATHLON 33
C5H
Retired taken branches misspredicted.

� ATHLON 34
C6H
Retired far control transfers.

� ATHLON 35
C7H
Retired resync branches (only non-control transfer branches counted).

� ATHLON 36
C8H
Retired near returns.

� ATHLON 37
C9H
Retired near returns mispredicted.

� ATHLON 38
CAH
Retired indirect branches with target mispredicted.

� ATHLON 39
CDH
Interruptes masked cycles (IF=0).

� ATHLON 40
CEH
Interrupts masked while pending cycles (INTR while IF=0).

� ATHLON 41
CFH
Number of taken hardware interrupts.

� ATHLON 42
D0H
Instruction decorder empty.

� ATHLON 43
D1H
Dispatch stalls.

� ATHLON 44
D2H
Branch aborts to retire.

� ATHLON 45
D3H
Serialize.

� ATHLON 46
D4H
Segment load stall.

105

� ATHLON 47
D5H
ICU full.

� ATHLON 48
D6H
Reservation stations full.

� ATHLON 49
D7H
FPU full.

� ATHLON 50
D8H
LS full.

� ATHLON 51
D9H
All quiet stall.

� ATHLON 52
DAH
Far transfer or resync brach pending.

� ATHLON 53
DCH
Breakpoint matches for DR0.

� ATHLON 54
DDH
Breakpoint matches for DR1.

� ATHLON 55
DEH
Breakpoint matches for DR2.

� ATHLON 56
DFH
Breakpoint matches for DR3.

106

A.7 Intel IA64 Family

A performance counter is called in Intel’s literature [14] a PMC. In the Itanium 1 processor there are 4
counters numbered PMC4 to PMC7. To be consistent with the rest of the document we map those counter
numbers to the names PMC0, PMC1, PMC2, PMC3, e.g. PMC 4 is called in our document PMC0.

� Tick Counter:

– IA64ITAN TC
elapsed machine cycles

Events common to all performance counters:

– IA64ITAN 0
BRANCH MISPRED CYCLE
branch mispredict stall cycle

– IA64ITAN 1
INST ACCESS CYCLE
instruction access cycle

– IA64ITAN 2
EXEC LATENCY CYCLE
execution latency stall cycle

– IA64ITAN 3
DATA ACCESS CYCLE
data access stall cycle

– IA64ITAN 4
BRANCH CYCLE
combined branch stall cycle

– IA64ITAN 5
INST FETCH CYCLE
combined instruction fetch stall cycle

– IA64ITAN 6
EXECUTION CYCLE
combined execution stall cycle

– IA64ITAN 7
MEMORY CYCLE
combined memory stall cycle

– IA64ITAN 11
FP FLUSH TO ZERO
FP result flushed to zero

– IA64ITAN 12
FP SIR FLUSH
FP SIR flush cycles

– IA64ITAN 13
BR TAKEN DETAIL
taken branch detail

– IA64ITAN 14
BR MWAY DETAIL
multiway branch detail

– IA64ITAN 15
BR PATH PREDICTION
branch path prediction

– IA64ITAN 16
BR MISPREDICT DETAIL
branch mispredict detail

– IA64ITAN 18
CPU CYCLES
CPU cycles.

107

– IA64ITAN 30
ISA TRANSITIONS
IA64 to IA32 transitions.

– IA64ITAN 31
IA32 INSTR RETIRED
IA32 instructions retired.

– IA64ITAN 32
L1I READS
L1 instruction cache reads

– IA64ITAN 33
L1I FILLS
L1 instruction cache fills

– IA64ITAN 34
L1I MISSES
L1 instruction cache misses

– IA64ITAN 35
INSTRUCTION EAR EVENTS
instruction EAR events

– IA64ITAN 36
L1I IPREFETCHES
L1 instruction prefetch requests

– IA64ITAN 37
L2 INST PREFETCHES
L2 instruction prefetch requests

– IA64ITAN 38
ISB LINES IN
instruction streaming buffer lines in

– IA64ITAN 39
ITLB MISSES FETCH
ITLB misses demand fetch

– IA64ITAN 40
ITLB INSERTS HPW
ITLB hardware page walker inserts

– IA64ITAN 45
INST DISPERSED
instructions dispersed.

– IA64ITAN 46
EXPL STOPS
explicit stops.

– IA64ITAN 47
IMPL STOPS DISPERSED
implicit stops.

– IA64ITAN 50
RSE LOADS RETIRED
RSE load accesses

– IA64ITAN 51
PIPELINE FLUSH
pipeline flush

– IA64ITAN 51
L1D WAY MISPREDICT
L1 data cache way mispredict (umask 2)

– IA64ITAN 52
CPU CPL CHANGES
privilege level changes

108

– IA64ITAN 53
INST FAILED CHKS RETIRED
failed speculative check loads

– IA64ITAN 54
ALAT INST CHKA LDC
advanced check loads

– IA64ITAN 55
ALAT INST FAILED CHKA LDC
failed advanced check loads

– IA64ITAN 56
ALAT CAPACITY MISS
ALAT entry replaced

– IA64ITAN 94
EXTERN BPM PINS 0 TO 3
counts the number of times external BPM pins 0 through 3 were asserted

– IA64ITAN 95
EXTERN BPM PINS 4 TO 5
counts the number of times external BPM pins 4 and 5 were asserted

– IA64ITAN 96
DTC MISSES
DTC misses

– IA64ITAN 97
DTLB MISSES
DTLB misses

– IA64ITAN 98
DTLB INSERTS HPW
hardware page walker installs to DTLB

– IA64ITAN 99
DATA REFERENCES RETIRED
retired data memory references

– IA64ITAN 100
L1D READS RETIRED
L1 data cache reads

– IA64ITAN 101
RSE REFERENCES RETIRED
RSE accesses

– IA64ITAN 102
L1D READ MISSES RETIRED
L1 data cache read misses

– IA64ITAN 103
DATA EAR EVENTS
L1 data cache EAR events

– IA64ITAN 104
L2 REFERENCES
L2 references

– IA64ITAN 105
L2 DATA REFERENCES
L2 data references

– IA64ITAN 106
L2 MISSES
L2 misses

– IA64ITAN 107
L1D READ FORCED MISSES RETIRED
L1 data cache forced load misses

109

– IA64ITAN 108
LOADS RETIRED
retired loads

– IA64ITAN 109
STORES RETIRED
retired stores

– IA64ITAN 110
UC LOADS RETIRED
retired uncacheable loads

– IA64ITAN 111
UC STORES RETIRED
retired uncacheable stores

– IA64ITAN 112
MISALIGNED LOADS RETIRED
retired misaligned load instructions

– IA64ITAN 113
MISALIGNED STORES RETIRED
retired misaligned store instructions

– IA64ITAN 118
L2 FLUSHES
L2 flushes

– IA64ITAN 119
L2 FLUSHE DETAILS
L2 flushe details

– IA64ITAN 123
L3 REFERENCES
L3 references

– IA64ITAN 124
L3 MISSES
L3 misses

– IA64ITAN 125
L3 READS
L3 reads

– IA64ITAN 126
L3 WRITES
L3 writes

– IA64ITAN 127
L3 LINES REPLACED
L3 cache lines replaced

Events specific to some performance counters:

� Counter PMC0:

– IA64ITAN C0 8
IA64 INST RETIRED
instructions retired.

– IA64ITAN C0 48
NOPS RETIRED
retired NOP instructions.

– IA64ITAN C0 49
PREDICATE SQUASHED RETIRED
instructions squashed due to predicate off

� Counter PMC1:

– IA64ITAN C1 8
IA64 INST RETIRED
instructions retired.

110

– IA64ITAN C1 48
NOPS RETIRED
retired NOP instructions.

– IA64ITAN C1 49
PREDICATE SQUASHED RETIRED
instructions squashed due to predicate off

111

A.8 Hitachi SR8000

The SR8000 processors have 8 performance counter registers, each counting exactly one hard-coded event
type.

� SR8000 C0
ITLB misses
Instruction TLB misses

� SR8000 C1
DTLB misses
Data TLB misses

� SR8000 C2
Icache misses
L1 instruction cache misses

� SR8000 C3
Dcache misses
L1 data cache misses

� SR8000 C4
Loadstore
Load or store operations

� SR8000 C5
Instructions
Instructions completed

� SR8000 C6
Cycle cnt
Machine cycles.

� SR8000 C7
FP-ops
Floating point operations

112

