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Abstract

The Sparse Matrix-Vector Multiplication (SpMV) operation is a very im-
portant building block in high performance computing. Performance im-
provements are often reached by the development of new sparse matrix
formats. In this work a theoretical approach, based on a comprehensive
requirements analysis is used to develop new efficient sparse matrix for-
mats. The work thereby considers the currently most important hardware
platforms: Intel CPUs, Nvidia GPUs and the Intel MIC platform.
Three new formats are developed: CSR5 Bit Compressed (CSR5BC),
Hybrid Compressed Slice Storage (HCSS) and Local Group Compressed
Sparse Row (LGCSR). Additionally, an autotuning approach for the exist-
ing Dynamic Block (DynB) format is developed. Results show that the new
formats achieve different performance on different platforms. The HCSS
and LGCSR format perform very well on CPU systems, while CSR5BC
is only suitable for the use on a GPU. Furthermore, the HCSS format
outperforms all existing formats on the Intel Xeon Phi. The developed
autotuning approach does achieve moderate performance increases. Using
compiler optimizations, the sequential SpMV performance of the DynB
format could be increased significantly.

keywords: SpMV, HPC, CPU, GPU, MIC, CSR5BC, HCSS, LGCSR, DynB,
Autotuning
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1 Introduction

In many scientific problems systems of linear equations arise, e.g., by discretizing
partial differential equations. The matrices which arise from these linear equation
systems, are often very large and sparse. Many special matrix formats have been
developed to store these matrices efficiently [77].

The Sparse Matrix-Vector Multiplication (SpMV) is an important operation that
is required in most iterative solving algorithms for sparse linear systems, e.g., Ja-
cobi, CG, GMRES. Often the major runtime is spent in the SpMV operation.
Therefore, a lot of research is done to optimize the SpMV operation [77].

The optimization thereby often relies on the development of new sparse storage
formats which allow a faster calculation of the SpMV operation. A wide variety
of formats exist, that range from very simple to highly complicated. Over time
many different optimization techniques have been developed to for example tackle
hardware specific challenges. The most complex formats combine several different
optimization techniques.

The most basic idea behind all sparse storage formats is to only store the non-
zero elements with some required indexing structures. This drastically reduces the
memory demand for storing the matrix and improves the SpMV runtime, as all
calculates of zero-values can be omitted. More sophisticated optimizations utilize
specific matrix properties like block structures.

Furthermore, the increasing complexity of recent hardware platforms require the
development of specialized matrix formats. Many requirements have to be fulfilled
to reach good performance when using sparse matrix operations on recent hardware
platforms [8]. Even more requirements have to be considered in heterogeneous
systems that utilize more than one hardware platform.

The objective of this work is the systematic development of new general purpose
sparse matrix storage formats, which are suited for the use on the different hardware
platforms. The relevant platforms are Intel Central Processing Units (CPUs) [28],
Nvidia Graphics Processing Units (GPUs) [56] and the Intel Many Integrated Core
architecture (MIC) [35]. The implementations may benefit by the use of hardware
specific features. To achieve this goal a comprehensive requirements analysis should
be done to determine the overall and hardware specific requirements. Furthermore
an analysis of existing sparse matrix storage formats should be done to identify the
currently utilized optimization techniques.

The focus is thereby on the development of general purpose storage formats
and the optimization of the SpMV performance. This should be respected in
the requirements analysis and in the analysis of existing optimization techniques.
Considerations regarding the heterogeneous execution of the SpMV operation, i.e

1



1 Introduction

the simultaneous execution on different hardware platforms, are out of scope of
this work.

This work should answer the question, whether it is possible to develop efficient
sparse matrix formats for the different hardware platforms using the described
theoretical approach, based on a requirements analysis. Thereby it is assumed,
that not a single format can deliver optimal performance on all relevant hardware
platforms.

This work is structured in the following way: Chapter 2 introduces three very
basic sparse matrix formats, the SpMV operation and the, for this work, relevant
hardware platforms. Furthermore, related work is presented. In Chapter 3 the
requirements and constraints for the development of efficient sparse matrix formats
are identified with a comprehensive requirements analysis. In Chapter 4 existing
format optimization techniques are presented. The development of the new formats
is described in Chapter 5. In Chapter 6 the implementation of the developed
formats is described in more detail. The performance of the newly developed
formats is evaluated in Chapter 7. Finally the findings and results of this work are
summarized in Chapter 8.
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2 Background

In this chapter the concepts and definitions, which are relevant for the understand-
ing of this work, will be explained. The first section defines the term sparse matrix
and explains the basic concepts of special sparse matrix storage formats. The
following section explains the SpMV operation in detail. Afterwards the relevant
parallel hardware platforms for this work are presented. In the last section related
work will be discussed.

2.1 Sparse Matrices and Basic Sparse Storage Formats

The term sparse matrix is not clearly defined in the literature [22, 77]. In general,
a sparse matrix is a matrix containing mostly zero elements. A common definition
is, that a matrix is sparse, whenever there is an advantage of using special stor-
age formats that only store the non-zero elements of the matrix. The advantage
thereby can be a reduced memory demand of the matrix, but also a reduction of
computational effort when using the matrix for mathematical calculations. The
mathematical operations, that have to be executed on the matrix, are also impor-
tant when selecting a sparse storage format [77].

In the following sections the three most basic sparse storage formats will be
explained. Knowledge about the utilized concepts is very important for the un-
derstanding of the more complex formats discussed later in this work, as these are
most often derived from them.

2.1.1 Coordinate Format

The Coordinate (COO) format [77] is one of the simplest sparse matrix storage
formats. Three vectors are required for storing the matrix in a compressed manner.
Two vectors are used for storing the row and column information of each non-zero
element of the matrix. The third vector stores the non-zero values itself. Figure 2.1
depicts an example matrix and the resulting data using the COO storage scheme.
The term nnz is used to describe the number of non-zeros elements in the matrix. It
should also be mentioned, that there is no specific order in which the elements have
to be stored in this format. The order showed in the figure is used for presentation
purposes only [77].

The memory demand of the format can easily be calculated. Different data
types can be used for storing the index data and the non-zero entries itself. In the
equation for the memory demand mCOO these sizes are denoted as Sint and Sfloat:

mCOO = nnz × (Sint + Sint + Sfloat)
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Figure 2.1: Structure of the COO format.

Most often values are stored using double precision, thus Sfloat is defined to be 64
bit. The size of the used data type for the index structures most often depends on
the size of the stored matrix. For most matrices the use of a 32 bit wide data type
is sufficient. For very large matrices it can be necessary to use a 64 bit wide data
type instead. The following equations show the difference in memory demand by
using the two different data types:

mCOO32 = nnz × (32 bit+ 32 bit+ 64 bit) = nnz × 128 bit

mCOO64 = nnz × (64 bit+ 64 bit+ 64 bit) = nnz × 192 bit

It can be seen, that the use of the bigger 64 bit data type increases the memory
demand significantly.

The biggest advantage of the COO format is its simple structure, which makes it
very easy to create. It is also possible to add new elements by expanding the existing
vectors (in theory). But the format also has some significant disadvantages. It is
not possible to iterate over the rows nor over the columns of the stored matrix,
which can prevent efficient parallel implementations of matrix operations. It is
also not possible to efficiently search for a specific element of the matrix, as every
element can be stored at a any position in the vectors. The COO format has less
importance for actual calculations and is more often used as a very simple matrix
exchange format.

2.1.2 Compressed Sparse Row Format

The Compressed Sparse Row (CSR) format [77] is one of the most commonly used
sparse storage formats. Figure 2.2 depicts a matrix represented in the CSR format.
Very similar to the COO format it requires three vectors for storing the matrix data.
Two are identical to the ones used by COO, one still holds the column indices and
the other one is used to store the non-zero values itself. The elements are stored
using row-major order, which is important for understanding the structure of the
last vector. The n-th element of the vector points to the first element of the n-th
row. This allows a very fast access to all elements of a given row. Additionally the
vector can be used to calculate the number of non-zero elements per row. This can
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Figure 2.2: Structure of the CSR format.

be done by subtracting the offset of the row from the offset of the next row. The
vector contains one additional element at the end, which points directly behind the
last element of the last row. Because of this, the number of elements in the last
row can also be calculated [77].

The additional variable Nrows is required for the calculation of the memory
demand for the CSR format. Nrows describes the number of rows of the stored
matrix. The required memory mCSR for the general case and when using the
different data types for the index structures can be calculated as following:

mCSR = nnz × (Sint + Sfloat) + (Nrows + 1)× Sint
mCSR32 = nnz × (32 bit+ 64 bit) + (Nrows + 1)× 32 bit

mCSR64 = nnz × (64 bit+ 64 bit) + (Nrows + 1)× 64 bit

It is obvious, that the CSR format is more efficient compared to COO for most ma-
trices, as it can be assumed, that there are much more non-zero elements compared
to the number of rows.

The CSR format can be traversed by rows, which allows the efficient paralleliza-
tion of the SpMV operation (explained in further detail in the next chapter). It
also stores the matrix in a more compressed manner compared to the COO format,
as the row pointer vector is expected to be much smaller than the row indices
vector used by the COO format. The Compressed Sparse Column (CSC) should
be mentioned here as well, a very similar storage scheme as CSR. The elements are
stored using column-major order instead of row-major order. Instead of column
indexes, the row indexes are stored. This allows the CSC format to be traversed
by its columns.

2.1.3 ELLpack Format

The ELLpack (ELL) [77] format uses a special approach, which allows very efficient
calculations on vector machines (e.g., GPUs or vector units in a CPU). Today
most often the modified ELLpack-R (ELL-R) [87] format is used, and therefore is
described in the following. Figure 2.3 shows a matrix stored in the ELL-R format.
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Figure 2.3: Structure of the ELL-R format.

Three vectors a required for storing the matrix data. The first vector stores the
number of non-zero elements that exist in each row. The other two vectors are
again used to store the column indices and the non-zero values itself. A specific
order is used for storing the matrix elements. In a first step the matrix is reduced
to its non-zero elements only (see Figure 2.3). The size of the resulting matrix
depends on the number of rows and the longest row. All elements are shifted to
the left, missing entries are filled with zero, which is called padding or fill-in. The
elements of this reduced matrix are then stored in the vectors using column-major
order. The only difference of the ELL-R format to the traditional ELL format is
the use of the additional width array [77].

To calculate the required memory for the ELL-R format the additional variable
width is required, which is the number of non-zero elements in the longest row.
With identical data types as used before, the memory demand mELL is calculated
as following:

mELL = Nrows × width× (Sint + Sfloat) +Nrows × Sint
mELL32 = Nrows × width× (32 bit+ 64 bit) +Nrows × 32 bit

mELL64 = Nrows × width× (64 bit+ 64 bit) +Nrows × 64 bit

It can be seen that the size highly depends on the width of the matrix, which
can result in very huge data structures, if the matrix structure is disadvantageous
(e.g., one very long row). The smallest memory consumption is achieved without
any fill-in, which is the case with all rows containing the same number of non-zero
elements. In this case Nrows × width basically equals nnz, which brings ELL to
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Figure 2.4: Simplified version of the SpMV operation.

nearly the same memory consumption as CSR. This shows, that in most cases the
memory consumption of ELL is higher than the of the CSR format.

The rows of the ELL (and ELL-R) format are easily traversable, very similar to
the CSR format. The special structure is advantageous especially for GPUs, which
benefit from accesses to neighboring memory elements (see Section 2.3.2). One big
disadvantage of the format is the required padding. This can lead to a very high
memory demand if the matrix structure is disadvantageous. The worst case is a
matrix with one fully populated row, which would require to store all elements of
the dense matrix.

2.2 Sparse Matrix Vector Multiplication

The Sparse Matrix-Vector Multiplication operation is widely used in many different
fields of applications. It is commonly required and used in many iterative solvers
like CG, GMRES or Jacobi [77]. The SpMV is defined in the BLAS standard [10]
as follows:

~y = α×A× ~x+ β × ~y

With α and β being scalars, ~x and ~y being vectors and A being a matrix. The
calculation of each element yi of the result vector ~y is defined as:

yi =

m∑

j=1

α× aij × xj + β × yi

With m being the number of columns of the matrix. In this work a simplified
version of the SpMV operation is used, with α = 1 and β = 0, which is depicted in
Figure 2.4. It also depicts the calculation of one element of the result vector y. It
can be seen in the figure, that zero-value elements of the matrix are ignored in the
calculation. Many computational steps can therefore be omitted, which can lead
to a significant performance improvement, compared to a dense calculation (which
would not ignore zero elements).
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2 Background

2.3 Relevant Parallel Hardware Platforms

In this chapter the currently most relevant single node hardware platforms in High-
performance computing (HPC) are described as target architectures of this work.
Regarding the current TOP500 list [86], the Intel Core processor line [32], or more
specific the Intel Xeon series [32] is the dominant CPU platform. In the TOP500
are also some systems using AMD Opteron [2], IBM Power [25] or Sparc [81]
processors, but these architectures are currently much less relevant than the Intel
Xeon processors. Therefore the focus in this work will be on Intel Xeon CPUs,
especially regarding low level optimization.

Many of the systems in the TOP500 list utilize additional accelerators. Nearly
all used accelerators are Nvidia Tesla GPUs [63] or Xeon Phi Coprocessors [35].
An insignificant number of systems also utilize AMD/ATI based GPUs [3]. The
focus of this work will be on the Nvidia and Intel based accelerator platforms.

It will get obvious in the following sections, that all of these compute platforms
are quite complex and can not be replaced by a simple model. A deeper under-
standing of the concrete architectures, or at least about some specific aspects, is
necessary for the requirements analysis in the following chapter.

Following the Intel Core Processors, the Nvidia Tesla GPUs and the Intel Xeon
Phi Coprocessor are described in more detail.

2.3.1 Intel Xeon Processors

The Intel Xeon processor series is part of the Intel Core product line. The Xeon
series is designed for server and HPC applications, while most of the other products
of the Intel Core line are supposed for the consumer market.

The latest microarchitecture from Intel is called Skylake. First Skylake EP prod-
ucts, which are relevant for HPC applications, will be available in 2017. The sys-
tems listed in the TOP500 list mostly rely on the currently available Haswell archi-
tectures and the previous architecture SandyBridge. In the following the Haswell
architecture will be explained in more detail. Furthermore the relevant changes in
the Skylake EP architecture are mentioned.

The Intel Haswell EP [28] architecture is the 4th generation of Xeon processors.
The first products where produced in a 22 nm process, while the newest iteration,
called Broadwell, is produced using a 14 nm process. The products implementing
this architecture where released between late 2014 and mid 2015. Processors of
the Broadwell-EP-line are available with up to 22 cores, which can process up
to 44 threads in parallel using hyper threading. The Haswell architecture offers 4
memory channels and every core has 2.5 MB L3 cache, which allows a maximum L3
cache size per CPU of 55 MB for the largest chips. Later iterations of the Haswell
architecture for the first time support DDR4 memory, which offers a higher memory
bandwidth.

Like most modern CPU architectures, Haswell offers vector units [24, p. 264ff.]
in addition to normal arithmetic units. Vector units follow the Single Introduction
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Multiple Data (SIMD) principle [24, p. 10], which allows efficient processing of
large data sets. Figure 2.5 illustrates the basic concept of vector units. The max-
imal number of elements that can be processed at once by a vector unit depends
on the width of the vector unit and the size of the data type. The Haswell archi-
tecture supports Advanced Vector Extensions 2 (AVX2) [31] instructions, which
define 256 bit wide operations. This allows the simultaneous calculation of up
to 8 single precision (32 bit) or 4 double precision (64 bit) elements. While the
older AVX instructions mostly supported floating point operations, AVX2 also sup-
port many operations for integer calculations. Haswell also implements the Fused
Multiply-Add 3 (FMA3) [26] instructions, which allows a very efficient calculation
of problems of the form a = b ∗ c+ d.

Xeon processors of the EP-lines can be used in dual CPU setups, where they
share the same memory space (shared memory systems). In such a configuration
they act as Non-Uniform Memory Access (NUMA)-systems [24, p. 346ff.], which
is further illustrated in Figure 2.6. In a NUMA based system, a single CPU does
not have direct access to the whole system memory. If the required data resides in
a memory location that belongs to another CPU, that data has to be transferred
through the Intel QuickPath Interconnect (QPI). This results in different memory
access times depending on the data location and the processor core accessing the
data. The location of data is therefore of relevance for parallel programs, which
will be explained in further detail in the next chapter.

The new Skylake architecture offers processors with up to 26 cores in the EP
lineup [58]. The cache per core stays the same, which results in up to 65 MB of L3
cache. The number of memory lanes is increased from 4 to 6. New in the Skylake
architecture is the optional integration of OmniPath [30] into the processors, a new

9
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Figure 2.7: Block diagram of a single SMX unit [56].

network technology from Intel. Skylake also supports the new Advanced Vector
Extensions 512 (AVX-512) [26] instructions, which support 512 bit wide opera-
tions. This doubles the number of elements that can be processed simultaneously,
compared to Haswell.

2.3.2 Nvidia Tesla GPUs

The Tesla-line is the server and especially HPC segment of Nvidias GPU prod-
ucts. The currently available GPU architecture is Maxwell [60]. It is only used in
very specialized segments of HPC, as it is specialized on half-precision calculations
and offers only low double precision performance. This section therefore focuses
on the previous Nvidia Kepler [59] architecture, which is widely used. The next
architecture from Nvidia is Pascal, where first products of the Tesla-lineup should
be available late 2016. The most important changes in the Pascal architecture are
mentioned at the end of this section.

The architecture of modern GPUs is quite different compared to CPUs [39, p.
2ff.]. While a core of a CPU is optimized for the execution of sequential programs,
GPUs are designed for highly parallel workloads on large datasets. The number of

10



2.3 Relevant Parallel Hardware Platforms

cores in a GPU is therefore much higher compared to a CPU, but they are also much
smaller and contain less control logic. One important part of the GPU is the Next
Generation Streaming Multiprocessor (SMX), which is shown in Figure 2.7. Each
SMX has its own L1 cache and scheduling logic, while the biggest part of the SMX
consists of cores and Special Function Units (SFUs). All SMX additionally share
a common L2 cache. Very similar to the vector units in a CPU, the SMX follows
the SIMD principle. On a higher abstraction level the SMX can be compared to a
single core of a CPU which only consists of very large vector units. Every SMX can
also handle multiple threads at the same time (very similar to hyper threading).

In difference to CPUs, modern GPUs are designed to handle a large amount of
threads, which are dynamically scheduled, by a hardware scheduler, on the available
hardware resources. The hardware can also switch very efficiently between multiple
active threads, which is for example used to hide memory access latencies. The
threads are organized in groups of size 32 called a warp. All threads of a warp share
a common instruction pointer, which means each clock cycle all threads can only
execute one common instruction on a specific, usually per thread different, memory
location. Simplified this could be seen as a large vector unit. When multiple threads
of the same warp follow different execution paths (branching) they diverge and the
execution of the threads is serialized [62]. This can have significant impact on the
performance of the executed program.

GPUs are designed to process a large amount of data, which resulted in the
development of memory with a very high bandwidth. The high bandwidth comes
with the drawback of higher memory access latency and some restrictions the pro-
grammer has so take care of when developing algorithms for GPUs. Nvidia GPUs
coalesce memory transactions to neighboring elements in the memory, which re-
duces the number of address transactions to the memory. The peak memory band-
width can only be reached with consecutive memory accesses of all threads [62].
Nvidia GPUs are also developed with weak coherence model, which means that
data in the caches is not invalidated by other threads and the programmer again
has to take care of synchronizing the cache contents.

The key differences in the upcoming Pascal architecture will be a feature called
mixed precision, the use of 3D stacked memory and the introduction of NVLink [66].
The mixed precision mode introduces the possibility to do calculations in half-
precision (16 bit) in addition to the typical single and double precision. The 3D
stacked High Bandwidth Memory 2 (HBM2) is a new technology that allows a much
more compact construction of memory. It allows to move the memory onto the
same chip as the GPU which increases memory bandwidth, reduces the latency and
improves the energy efficiency. The HBM2 memory thereby completely replaces the
GDDR5 memory. NVLink [61] is a new high bandwidth interconnect technology
between multiple GPUs or a GPU and the CPU.

2.3.3 Intel Xeon Phi Coprocessors

The Intel Xeon Phi is a relatively new hardware platform developed by Intel. It
implements the MIC [29] and its first generation is called Knights Corner. The
next, second generation, products are called Knights Landing and they start to be
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Figure 2.8: Simplified Xeon Phi Knights Corner [9].

available on the market at the time of writing.
As the hardware of the Knights Landing products is not widely available yet the

focus will still be on the previous architecture Knights Corner. The first generation
Xeon Phi is available as PCIe expansion card and its simplified architecture is
depicted in Figure 2.8. The Xeon Phi consist of up to 61 CPU-like cores, which are
interconnected by a bi-directional ringbus. Each core has its own private L1 and
L2 caches and can process up to 4 hardware threads. The Xeon Phi also provides
512 bit wide vector units, with a hardware specific instruction set (distinct to
AVX-512).

The next generation Xeon Phi, code named Knights Landing was introduced in
June 2016 [36]. It is available as PCIe accelerator and as socketed version, where it
replaces the host CPU. Figure 2.9 shows its completely new architecture. Instead
of a ringbus, a 2 dimensional mesh network, consisting of 36 tiles, is used. In
addition to the 6 available DDR4 memory channels, the new platform offers 16 GB
of Multi-Channel DRAM (MCDRAM). MCDRAM is a high bandwidth and on
package memory and comparable to HBM2 from Nvidia. The MCDRAM can be
used as additional cache, extension of the DDR4 memory or it can be programmed
specifically.

Each tile of the architecture consists of two processing cores, which share 1MB of
L2 cache. Every core can handle up to 4 hardware threads and has 2 dedicated Vec-
tor Processing Units (VPUs), which implement the AVX-512 instructions. Overall
the new Xeon Phi consist of up to 72 cores which can handle up to 288 concurrent
hardware threads.

2.4 Overall Architecture Comparison

In the previous sections the three relevant hardware platforms for this work have
been described. Table 2.1 gives an additional brief overview over the discussed
12
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hardware platforms and generations. For each hardware platform the currently
available and the next upcoming hardware generation is listed (except Skylake, as
no specific information are available yet).

The table shows clearly the much higher raw performance of GPUs and the new
Xeon Phi platform compared to the classical CPUs. Also significant differences
in the available memory bandwidth can be seen. One of the biggest changes in
the upcoming hardware generations is the use of HBM2 and MCDRAM which
highly improve the memory performance. In comparison to the GPUs, CPU-based
systems offer much higher memory capacities. The new Xeon Phi Knights Landing
architecture allows a moderate amount of memory by using MCDRAM and DDR4
memory at the same time.

Not presented in the table is the single thread performance of the different plat-
forms, which can be expected to be much higher for CPU-based systems. One
reason for this is the much lower memory latency which is also not shown in the
table. While this may change with the new HBM2 and MCDRAM memory, the
CPU architecture is most specialized for sequential workloads. Overall a trend to
higher parallelism and increasing vector unit sizes is obvious.

2.5 Related Work

The SpMV operation, using various formats on different platforms, is a well re-
searched scientific area. However, there exist only a few publications, that try to
analyze the underlying optimization techniques used in the different formats in a
comprehensive manner. The work of Shahnez et al. [79] gives a brief overview of
existing storage formats and a basic insight into the problems, which are tackled
by some specific formats. The publication of Langr [48] also contains an analysis of
existing storage formats, but the focus is on space efficiency of very large matrices
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Architecture Performance Memory Bandwidth Max. Memory
(Product) [in GFLOPS] [in GB/s] [in GB]

Intel Haswell 634 77 1536 DDR4
(E5–2699v4)

Nvidia Kepler 1430 288 12 GDDR5
(Tesla K40)

Nvidia Pascal 4700 720 16 HBM2
(P100)

Knights Corner 1210 352 16 GDDR5
(7120P)

Knights Landing 3470 490 MCDRAM 16 MCDRAM
(7290) 115 DDR4 384 DDR4

Table 2.1: Summary of the most important hardware features of the relevant hard-
ware platforms and generations.

that can not be stored in memory, instead of the performance.
The newer publication of Langr et al. [49] describes evaluation criteria for sparse

matrix formats. The work also contains a survey of existing matrix format. Some
of the presented criteria will be considered in the evaluation of this work.

The work of Böckem [13] was published at the time of writing of this work and
provides a comprehensive survey of existing matrix formats. The focus of the work
is on the presentation and coarse categorization of the formats. In contrast to this
work, no focus was on the optimization techniques of the identified formats.

The work of Koza et al. [43] describes fundamental GPU specific issues when
calculating the SpMV operation. Most of these issues are still applicable to other
hardware platforms like CPUs. This has some relevance for this work and will be
considered in the requirements analysis. In contrast to this work no new matrix
format was developed using the findings. Additionally, this work will not focus on
a single platform.

The publications [34, 89, 90] describe some possible optimization techniques for
the SpMV operation. Most of these are low-level optimizations, which are con-
sidered in the following chapters. These publications do not include extensive re-
quirement analysis. The focus is thereby on the programmatically optimization of
existing matrix formats and not the development of new sparse storage structures.

Various other publications [12, 14, 17, 47, 50] discuss the use of auto-tuning
approaches, which can be used for a wide range of optimizations. E.g., the selec-
tion of format parameters, specific optimization techniques or the selection of the
best suited formats. Autotuning approaches based on complex models [14, 17] or
mathematical and machine learning concepts [50] are out of scope of this work. In
this work, autotuning is used for finding a improved implementation of the SpMV

14



2.5 Related Work

operation itself. A similar technique is used by Byun et al. [12], who present a
autoutuning framework for optimizing the CSR format. This framework is used to
find the optimal blocking for the Blocked Compressed Sparse Row (BCSR) format
for a given input matrix and used hardware platform. The focus of the autotuning
approach developed in this work is on the optimization of the SpMV operation for
the Dynamic Block (DynB) format [72], which uses dynamic block sizes. Further-
more, it should be evaluated if the findings of these older publications still hold
true compared to optimizations done by recent compilers.

There exist various publications, which present new optimization techniques and
sparse storage formats e.g. [38, 42, 44, 51, 53, 85]. They all have in common
that the focus is on the presentation of the new format and the used optimization
techniques. In none of these publications a comprehensive requirements analysis for
the used platforms and the relevant operations is done. The development process
of most of these papers could be described as an empirical approach, while the
focus of this work is on using a systematic theoretical approach.
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3 Requirements Analysis

In this chapter the requirements for executing the SpMV as efficient as possible
are analyzed, which is done on an abstract level intentionally. The requirements
are deduced from the underling problems which have to be identified first. It is
also important to mention, that the line between the requirements and solutions
is very thin. In this chapter the most abstract requirements should be identi-
fied, while solutions to these problems will be developed in the following chapters.
There will be a distinction between identified requirements and constraints. While
requirements can be fulfilled by specific optimization techniques, the constraints
are more general, but still important considerations which have to be respected in
the development process of new formats. The rest of this chapter is structured as
follows. First the problem of memory boundedness will be discussed, followed by
the description of computational related problems and requirements. Afterwards
additional general problems will be described. The chapter closes with a short
summary of all findings.

3.1 Problem of Memory Boundedness

The most important performance constraints of the SpMV operation are related
to the memory subsystem. One reason for this is, that the SpMV operation is a
memory bandwidth bounded problem. This is stated in many scientific publica-
tions [42, 69, 74] and also has been analyzed in more detail [89]. Following a simple
model will be developed to further investigate the cause of this constraint.

By calculating the relation between the time for transferring all required data
ttrans and executing all calculations tcalc the limiting factor can be identified. If
the time for transferring all required data is bigger than the execution time, the
problem is memory bandwidth bounded. This can be expressed as the following
equation:

ttrans
tcalc

> 1

The time ttrans is calculated by dividing the amount of moved data d in Byte by
the available bandwidth b in Byte per second. Very similar the time tcalc can be
determined by dividing the number of calculations c in Floating Point Operation
(FLOP) by the available processing performance p in Floating Point Operations
Per Second (FLOPS):

ttrans =
d

b
tcalc =

c

p
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1 for i = 0 to nRows do
2 tmp = 0
3 for j = rowPtr[i] to rowPtr[i+ 1] do
4 tmp += values[j]× x[columnIndices[j]]
5 end
6 y[i] = tmp

7 end
Algorithm 1: SpMV algorithm for the CSR format.

Overall this results in the following equation, which is separated in two factors
on the right hand side. The first factor is the relation between the actual available
computational performance p and memory bandwidth b. These two variables can be
seen as given by the used hardware platform. For this comparison the second factor,
which is defined by the amount of moved data d and the number of calculations c
is more interesting.

ttrans
tcalc

=
p

b
× d

c

To investigate this in further detail, it is required to determine the amount of
moved data as well as the number of executed calculations. The storage scheme
of the used format is important when calculating the amount of moved data. The
CSR format (see Section 2.1.2) is used here as an example with 32 bit index data
and 64 bit double precision values. The result will differ when other formats are
used, but it can be assumed that the overall findings for the CSR format also apply
for other formats.

The algorithm of the SpMV operation for the CSR format is shown in Algo-
rithm 1. It can be seen, that actual calculations only appear in the inner most loop
(line 4). The line contains a multiplication and an addition, which can be handled
as a single Fused Multiply-Add (FMA) instruction. As we try to show the memory
boundedness we assume the best case regarding number of required operations. So
it is assumed that 2 FLOP are executed in each iteration. The inner most loop is
repeated once for every non zero element, which means it is overall repeated nnz
times. Additional integer operations occur in the heads of the loops, but as they
are not processed by the floating point units they are ignored here.

c = nnz × 2FLOP

For each iteration of the inner most loop 64 bit or 8 Byte have to be read from
values. Additionally, 32 bit or 4 Byte are read from columnIndices. As the loop
is repeated nnz times this leads to the following amount of data being transferred:

d1 = nnz × (8Byte+ 4B) = nnz × 12B

Additional accesses to the ~x vector occur in the inner most loop, but as we try to
proof the memory boundedness we assume the smallest amount of data moved and
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3.1 Problem of Memory Boundedness

therefore a perfect caching for the vector. This means, each of the n elements of
the vector is accessed only once in this model. Additionally for each iteration of the
outer loop accesses to the rowPtr array are required. Algorithm 1 was kept simple
to allow better readability, which results in two accesses to the rowPtr array in
each iteration. The algorithm can be changed so that only one access per iteration
is required (see Algorithm 2 in the appendix). Also the ~y vector is accessed once in
each iteration. This results in the following amount of data d2 being transferred.

d2 = n× (4B + 8B + 8B) = n× 20B

This finally results into the following equation. The interesting part is the sec-
ond factor in the equation, which consists of a sum of a constant 6 and a second
summand which depends on the sparsity of the matrix. It can be assumed that the
number of rows n is always smaller than the number of non-zeros nnz, the value
of the second summand is therefore between 10 and 0.

ttrans
tcalc

=
p

b
× nnz × 12B + n× 20B

nnz × 2FLOP
=
p

b
× B

FLOP
× (6 +

n

nnz
× 10)

In the hypothetical case that the available memory bandwidth b of a system is
equal to the compute performance p this results into the following equation:

ttrans
tcalc

= 1× (6 +
n

nnz
× 10)

The second factor has been shown to be positive and bigger than 6. The rela-
tion between ttrans and tcalc is therefore bigger than 1, which shows the memory
bandwidth boundedness of this case. For real systems it can be assumed, that
the available memory bandwidth b is much smaller than the available performance
p. Using the theoretical peak memory bandwidth and compute performance of the
Intel Haswell CPU presented in Table 2.1 (see Section 2.4) results into the following
equation:

ttrans
tcalc

=
634

77
× (6 +

n

nnz
× 10) = 8, 2× (6 +

n

nnz
× 10)

As the first factor increases by the factor of about 8, the equation shows an even
stronger memory bandwidth limitation. It can be assumed, that the disproportion
between the available memory bandwidth and compute performance will not vanish
in near future. In fact it is plausible, that the gap is getting wider. It is therefore
shown that the SpMV is, and probably will be in near future, a memory bounded
problem.

Requirement R1 (reduce amount of moved data). The most obvious implication
of the memory bandwidth limitation is to reduce the amount of data that has to
be moved. This is indeed one of the major reasons for using sparse storage formats
in the first place. It was already shown in Section 2.1 that even the very simple
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formats have a different memory footprint. As previously shown the factor between
the amount of moved data and the processing power is quite big. It is therefore
very unlikely, that the storage demand of the matrix can be reduced to the point
where the problem is no longer memory bound. But than it would be feasible to
invest some processing power to further reduce the memory demand of the format.
This could for example be done with advanced compression techniques, which has
to be investigated in more detail in the following chapters.

Requirement R2 (allow / improve data reuse of the ~x vector). Another way of
reducing the amount of moved data is by data reuse. As all elements of the matrix
are only read once, there is no data reuse at all. Each element of the ~y vector has
also only to be touched once, if the format allows row based calculations. The ~x
vector is therefore the only data structure that can benefit from data reuse. The
previously developed model which was used to show the memory boundedness, did
assume a perfect data reuse and therefore represents the best case regarding the
required memory bandwidth. The model can be extended to consider more realistic
caching scenarios. Therefore a new variable cmr which describes the cache miss
ratio is introduced. The accesses to the ~x vector occur in the inner most loop of
the Algorithm 1 and therefore are executed nnz times. Taking the cmr variable
into consideration this results in the following amount of overall moved data:

nnz × 12B + nnz × 8B × cmr + n× 12B

The range of the cache miss ratio can be defined as 1 ≥ cmr ≥ n
nnz . The upper

bound of cmr = 1 represents the worst case in which no data could be cached
and nnz accesses on the ~x vector are required. The lower bound is given by the
assumption that every element of the ~x vector is at least accessed once and therefore
n accesses to the vector are required.

Valuating the impact of the caching on the overall amount of data moved requires
the definition of average number of non-zeros per row. It can be assumed that
every row has at least one non-zero element and therefore n ≤ nnz is always true.
Defining a upper bound for the average number of non-zero elements per row is
not that easy as it strongly depends on the type of problem. For simplicity it is
assumed here, that the average row contains less than 100 non-zero elements. The
bigger nnz is compared to n, the bigger is the influence of the caching. The upper
bound of nnz = 100 ∗ n is therefore used for the valuation of the caching. The
minimum and maximum amount of data movement are now determined by the
upper and lower bound of the cache miss ratio cmr.

The caching has therefore the maximum effect when nnz = 100 ∗ n and cmr =
n

nnz . When considering best and worst case caching behavior the following amount
of data dmin and dmax has to be transferred:

dmin = nnz × 12B + nnz × n

nnz
× 8B + n× 12B

= 100× n× 12B + n× 20B = n× 1220B

dmax = nnz × 12B + nnz × 1× 8B + n× 12B

= 100× n× 20B + n× 12B = n× 2012B
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It can be seen that the overall amount can be reduced from n×2012B to n×1220B
which is about 40% less, when assuming perfect caching. It is therefore worth to
consider caching effects in the development process of a format.

Requirement R3 (improve access latency on the ~x vector). Beside the reduction
of the amount of moved data it is also important to consider the access latency
to the main memory. Required data has to be requested early enough so that it
is available when it is needed. The access latency can be hidden or reduced by
using prefetching techniques [32]. Prefetching is used to load relevant data from
the main memory into the processors caches before they are actually required.
This can reduce the access times significantly, as the access latency to the cache
is much lower compared to the main memory. The prefetching can be done in
software, but most modern processors also offer hardware prefetchers, which are
able to detect simple access patterns and automatically try to prefetch relevant
data elements [27]. Software prefetching can be done by the developer, but is also
done by the compiler, depending on the used optimization level.

The matrix data is accessed in a continuous manner in most cases (depending
on the used storage scheme and SpMV approach). As this is a very simple access
pattern it is assumed, that the data can be prefetched efficiently by hardware
prefetchers, and is therefore not relevant regarding the access latency. The ~y vector
is only written and no reads are required and it is therefore also irrelevant for the
access latency as write buffers exist.

The accesses to the ~x vector depend on the structure of the matrix and can be
highly irregular. Additionally indirect memory accesses are used. It is unlikely
that a hardware prefetcher can successfully prefetch the required data elements.

Research has shown, that the access latency to the L1 and L2 caches on a current
CPU based system are in the area of 10 cycles, while main memory accesses require
over 150 cycles [8]. Assuming no prefetching or cache reuse at all, this means 15
times higher access times for all accesses on the ~x vector. Some of the access times
may be hidden by other hardware features like out of order execution [32]. The out
of order execution allows the execution of other, independent, parts of a program,
while the system is waiting for data. Overall the memory latency on the ~x vector
remains to be a problem.

Requirement R4 (allow / improve consecutive memory accesses). The access
pattern of the different threads in a parallel executed program can have a significant
impact on the performance. The most important factor here are cache lines or
minimal memory transaction sizes. On all relevant hardware platforms the accesses
to the main memory are organized in transactions of a certain minimal size. For
the CPU based systems this is the size of a single cache line (64 Byte). When an
memory location is accessed, the whole cache line corresponding to this location
has to be transferred.

When multiple threads access memory locations in an interleaved pattern this
can result in a significant increase of the overall transferred data. This is illustrated
by Figure 3.1. Additionally a simple model is used to demonstrate the effect of
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Figure 3.1: Comparison of different access patterns and the related cache behavior.

interleaved memory accesses. Assuming a cache line length in number of memory
locations c, number of threads p and the number of accessed memory locations n
(e.g., length of a vector). Further assuming that all memory locations are accessed
in a perfect interleaving pattern and that n is much bigger than c and p. Depending
on the number of threads and the size of the cache lines there are three possible
cases: c < p, c = p and c > p.

In the first case there are more threads than elements in a single cache line,
which means that the first c threads access elements of the same cache line and
thus have to load the identical cache line. As this happens to every cache line, the
overall amount of transferred data is increased by the factor c. The same is true
for the second case where the number of threads and elements in a cache line is
identical.

In the last case there are more elements in a cache line than there are threads
accessing elements. This results in each thread accessing multiple elements of the
same cache line. Every thread has to access elements of every cache line, which
means that the amount of transferred data is increased by the factor p.

The minimum of the variables c and p can be used to express the general case
with d being the amount of data transferred: d = n×min(c, p). In an optimal case
every data element has to be transferred only once which means d = n. This shows
that a bad data access pattern can significantly increase the amount of data being
transferred by the factor min(c, p).

A proper access pattern is also required to make optimal use of the hardware
prefetcher. As already described in the previous Requirement R3, a regular access
pattern is required for the hardware prefetcher to work.

Additionally a consecutive access pattern can be advantageous when using vector
units, as a more scattered data layout requires the use of gather operations to
access all the required data elements. Even though current hardware platforms
provide very efficient gather and scatter operations for the available vector units,
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3.1 Problem of Memory Boundedness

the performance can increase when they are not required [32].

Constraint C1 (prevent interleaved write operations on the ~y vector). In the pre-
vious requirement the importance of the access patterns for reading operations was
mentioned. When taking writing operations into consideration additional effects
can occur, which can decrease the performance even further. This considerations
are only relevant for the accesses to the ~y vector, as it is the only data structure
actually written to.

A very important aspect is the problem of cache line invalidation. In the previous
Requirement R4 a simple model was introduced to show the effect of parallel read
operations. The same model is used to explain the effect of cache line invalidation.
It has been shown, that multiple threads will access the same cache line, when an
interleaved access pattern is used. There is no problem when multiple caches hold
the same cache line for each of the threads as long as all accesses are read only.

The situation changes as soon as data of the cache line is modified. In every
architecture that ensures cache coherence with invalidation based protocols (e.g.,
CPU based systems), all copies of a cache line have to be invalidated when one
thread writes to it. When a cache line is invalidated, it has to be requested again
from the main memory upon the next memory access that is related to that cache
line. Additionally the next read of that cache line is stalled until the write of
the first thread finished, i.e., the cache line is written back to the main memory.
This behavior can induce significant latencies which results in stalled threads and
performance loss.

The worst case scenario is, multiple threads constantly writing to the same cache
line, which results in continuous cache line invalidation and slow synchronization
using the systems main memory. Even though this problem is not directly present
on current GPU architectures, which implement a weak coherence model, the devel-
oper would still have to set manual synchronization points to ensure the coherence.
This results in the same effect of slow memory synchronization using the systems
main memory.

The access of multiple threads to elements of the ~y vector that reside in the
same cache line should therefore be prevented. The data partitioning in the SpMV
calculation is important and should consider in which cache lines the elements of the
~y vector reside. Especially interleaving accesses of multiple threads on neighboring
rows, by different threads should be prevented.

Constraint C2 (NUMA-awareness). For shared-memory systems (e.g., dual socket
Intel Xeon processors) another memory related constraint exists. In NUMA based
systems (see Section 2.3.1) the physical location of data can have a large impact
on the performance [34]. Problematic are memory accesses on data that does not
reside in the CPU local memory, which increases the access latency significantly.
Additionally it is also important to distribute the data between the memory of the
different CPUs so that the full memory bandwidth of the system can be utilized [8].
If all data reside in the memory of one CPU only, in a dual CPU setup, the overall
available memory bandwidth is halved.
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This results in multiple important factors for the SpMV operation. Firstly each
thread should work on a fixed set of data, that resides in the local memory of
the corresponding CPU core. The threads should therefore also avoid accessing
data that correspond to other threads. Another important aspect is the memory
allocation, which influences the placement of the data in the memory. Most current
systems use a first touch policy [22, p. 186f.] for the actual memory placement of
data. In a system with first touch policy the memory placement is decided at the
time of the first memory access instead of at the time of the memory allocation. It
is therefore important, that the initial write operation after the allocation is done
by the correct thread. In the format creation process each thread should write its
part of the format data structures to ensure a proper placement in the memory.

Constraint C3 (prevent synchronized writes on the ~y vector). Another major
performance bottleneck can be synchronization. Depending on the used hardware
platform and the amount of parallelism, synchronized memory accesses can be very
inefficient [8]. Regarding the SpMV operation, this is only relevant for the ~y vector,
as this is the only data structure that is actually written to. The COO format is
an example where synchronized writes are required, when the SpMV is processed
in parallel. This is because the matrix elements are stored without a particular
order. When processed in parallel, in a straight forward way, any thread could
process elements of any row, which results into a read and write to the ~y vector.
As it could not be ensured that two processes try to write to the same element of
~y, synchronized writes are required.

The CSR format on the other hand can be calculated without the use of syn-
chronous write operations (see Algorithm 1). This is possible as it can be ensured
that one process calculates all partial results of one row and only one write oper-
ation per element of the ~y vector is required. Memory synchronization can reduce
the memory throughput and should therefore be avoided.

3.2 Problem of Computational Unit Utilization

Even though the SpMV operation is memory bound, the computational part can
not be ignored. Nowadays available hardware platforms are highly parallel and
many aspects have to be considered to reach decent performance. If the hardware
is not utilized properly the performance can degrade significantly, possibly enough
to reduce the overall SpMV performance. Following the identified relevant require-
ments regarding the utilization of computational units, that should be considered
in the development process, are presented.

Requirement R5 (allow / improve utilization of vector units). All hardware
platforms relevant for this work contain vector units (Xeon and Xeon Phi) or could
be described as vector processors (GPUs). It is very important to utilize these
vector units to reach decent computational performance. If the vector units are
not used, a significant part of the overall functional unit can be idle, degrading the
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3.2 Problem of Computational Unit Utilization

performance significantly. Assuming a vector unit that can process q elements at
once, the performance drops by the factor 1

q . On current CPU based systems q is
typically 4 or 8, while it is 32 on most GPU based systems. It is therefore obvious,
that a proper utilization of the available vector units is very important.

Constraint C4 (ensure proper memory alignment). One problem that is also
introduced by vectorization is memory alignment [22]. Most vector operations are
optimized to work on specific memory boundaries, typically depending on the width
of the data loaded or stored by the operation. While it is possible to use unaligned
load and store operations, these come with a performance penalty.

For reaching good performance it is therefore necessary to ensure a properly
aligned memory allocation, respecting the required memory boundaries. Addition-
ally, even more important, the data has be structured in such way, that the memory
accesses in the SpMV operation also respect the boundaries. This for example may
require the introduction of additional padding.

Constraint C5 (prevent branching). Another computation related problem is
branching, which happens in programs for example when conditional statements
are used. This means the program can, at some point, follow different execution
paths. All for this work relevant platforms are sensitive to branching for some
degree and for different reasons.

For GPUs, performance decreases if different threads follow different execution
paths (see Section 2.3.2). The reason is a serialization of the corresponding part
of the program [62]. CPU-based systems suffer performance losses for a differ-
ent reason [22]. Todays CPUs typically use quite deep pipelines, to allow a high
computational throughput with the cost of a higher latency. In case of branching
the next instruction is only known, when the condition at the branching point is
evaluated. Modern CPUs try to predict the most probable branch and queue the
corresponding instructions. In the case that the prediction was correct, no perfor-
mance is lost. In the other case, the correct instructions have to be queued, which
introduces additional latency.

Requirement R6 (allow / improve load balancing of the SpMV). Since some
years there is no increase or even a decrease in processor clock speeds [22, p. 23]
This can be explained with reaching physical limitations and because of energy
efficiency reasons. The trend of modern processors and accelerators is therefore to
increase the parallelism of the processors. One very important issue with highly
parallel systems is the load balance of all the running processes. Nearly all parallel
programs suffer from load imbalances which lead to waiting times for the processes
that finished early. Every time a process is waiting, the related functional units
are idle and the reached processing performance can degrade significantly.

It is therefore important to improve the load balance of the SpMV operation as
good as possible. Often the format has only a indirect role for the load balancing
process, but the format can improve the load balance by an intelligent design.
Additionally the data structure can allow and prevent fine-granular load balancing
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techniques. If for example a format allows row based accesses, a load balancing
can be implemented row based. If only accesses to a slice (a group of rows) are
possible, the possible load balancing techniques work on much coarser items. The
developed format should allow a proper load balancing or even improve it by an
intelligent internal data layout.

3.3 Additional General Problems

Beside the already mentioned requirements derived from the memory boundedness
and the utilization of the computational units, there exist further more practical
and general requirements.

Constraint C6 (allow efficient format creation). The creation of a matrix in
a specific format can be very time consuming. Creation thereby often can mean
conversion from the CSR or COO format into the specific format. For many formats
the creation or most part of the creation can only be done sequentially. Whether the
creation time is relevant mostly depends on the specific application. When matrices
are created only once and do not change structurally for many SpMV operations,
the creation time has only a minor influence on the overall runtime. When the
number of iterations is lower or the matrix structure does change, which would
require a recreation of the matrix, the creation time has much more importance.
As this work will focus on matrices that do not change structurally, this constraint
has only minor importance, but still should not be completely ignored.

Constraint C7 (allow efficient matrix element updates). The ability to update
matrix elements is much simpler compared to the previous requirement of matrix
creation. The matrix structure is unchanged, and only the values of the matrix
elements are changed. One major aspect when updating matrix elements is the
process of finding the location where a specific element is stored. This can differ
highly for different matrix formats. The COO format for example does not offer
any additional internal ordering, which means that any element could be stored at
any position inside the format. In the worst case every element has to be searched
to find one specific matrix element.

Row wise or column wise traversable formats like the CSR format allow a much
more efficient search. As it is possible to directly identify all elements of a specific
row or column, only these elements have to be searched, what should be a much
smaller search space for most typical sparse matrices.

In practice, many applications are developed using one specific matrix format
like CSR. It is often unrealistic to introduce a new, specialized, matrix format to
be used in the whole software. A common use-case is the conversion of the matrix
into a specialized matrix format only for specific parts of the software, like a linear
solver. If this part of the software is executed multiple times for the same matrix,
but with different values, it can be advantageous to reuse the previously created
matrix structures and only update the matrix elements accordingly. If the position
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of the non-zero value can be calculated based on the position in the CSR matrix,
this can be done very efficiently.

Constraint C8 (allow asynchronous computation of the SpMV operation). An-
other requirement is the ability to compute the SpMV operation asynchronously
on another platform. Taking modern accelerators like Xeon Phi or modern GPUs
into consideration, the ability of executing parts of the SpMV operation asyn-
chronously on an accelerator is very important. Accelerators often come with their
own memory and have no direct or only slow access to the hosts main memory.
It is therefore mandatory to transfer all required data into the device memory.
The computational units are unused while that data is transferred when no asyn-
chronous computation is possible. The overall processing time can therefore be
reduced by allowing asynchronous computations which allows the parallel transfer
of data while the processing can already be started on other parts of the matrix.

Another additional benefit of asynchronous computations is, that possibly larger
problems can be solved. The device memory of the accelerators is often much
smaller than the main memory of modern CPU based systems, which can be a
limiting factor for the maximum problem size. With asynchronous computations
not all data has to be in the device memory at every time, and therefore is the device
no longer a bottleneck. Many of the described advantages also apply to distributed
systems, where data has to be transferred between multiple computation nodes.
This has no further relevance for this work, but could be interesting for further
research.

Constraint C9 (prevent parameters or offer simple heuristics). More complicated
formats occasionally offer tuning parameters which allow further hardware and
matrix specific optimization (e.g. SELL-C-σ [45], ELL-BRO [85]). This can further
increase the performance of the SpMV operation, but can also make the use of the
format much more complicated. The developed format should be simple to use and
should therefore at least offer simple heuristics for potential tuning parameters.

3.4 Summary

In this chapter various different requirements and constraints for the development
of an efficient sparse matrix storage format have been identified. It is unlikely
that all the requirements can be considered in the development as it is assumed
that some optimizations may fulfill one requirement but have a negative effect
on others. Similarly not all constraints may be considerably. The best suited
optimization techniques have to be identified and the negative side effects have
to be considered in the development process. All mentioned requirements and
constraints are summarized in Tables 3.1 and 3.2 to provide a better overview of
all mentioned aspects.
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# Short Description

R1 reduce amount of moved data by reducing the overall memory demand
R2 allow / improve data reuse of the ~x vector
R3 improve access latency on the ~x vector
R4 allow / improve consecutive memory accesses
R5 allow / improve utilization of vector units
R6 allow / improve load balancing of the SpMV

Table 3.1: Summary of all determined requirements of the SpMV operation.

# Short Description

C1 prevent interleaved write operations on the ~y vector
C2 NUMA-awareness
C3 prevent synchronized writes on the ~y vector
C4 ensure proper memory alignment
C5 prevent branching
C6 allow efficient format creation
C7 allow efficient matrix element updates
C8 allow asynchronous computation of the SpMV operation
C9 prevent parameters or offer simple heuristics

Table 3.2: Summary of all determined constraints for the development process.
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4 Analysis of Optimizations in Existing
Formats

In the last chapter the requirements for developing sparse matrix storage formats,
that can be used efficiently for calculating the SpMV operation, have been iden-
tified. Based on an extensive survey of existing spare matrix storage formats, the
focus of this chapter is on the identification of optimization techniques. The inves-
tigation thereby primarily includes optimization techniques which are important
for the design process of a new sparse matrix format. Low-level optimizations (e.g.,
loop unrolling, prefetching or the use of processor intrinsics) are not relevant in the
design process, as they can be applied in the implementation stage of most formats.

At the time of writing a bachelor-thesis has been published, presenting a com-
prehensive survey of existing matrix formats [13]. The focus of the work is thereby
on the description and categorization of existing matrix formats. The work has
been used to identify additional matrix formats, which were not already found in
the own survey.

In the following sections different groups of optimization techniques are described
with their advantages and possible problems. Also the relation to the identified
requirement and constraints is discussed.

4.1 Blocking and Pattern Detection

One very early optimization was the approach of blocking and one of the first
formats implementing it was the BCSR format [5]. Various different blocking
approaches exist which will be explained in more detail in this section. A very
simple blocking approach is illustrated in Figure 4.1. It shows the use of two
dimensional blocks with a fixed size as they are used in the BCSR format. One
major aim of most blocking approaches is the reduction of memory, that is required
for storing the index information (Requirement R1). When dense blocks are used,
only the coordinates of the block have to be stored and the positions of all non-
zero elements can be determined by their position within the block. Another
aspect of blocking is cache reuse (Requirement R2) and vector unit utilization
(Requirement R5). As a block contains elements with the same or at least very
similar column indices the cache reuse of the ~x vector can be improved [34]. Fixed
block sizes can possibly also ensure proper memory alignment (Constraint C4). If
the size and the structure of a block is known, highly optimized SpMV kernels can
be created which allow a very efficient calculation [34].
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Figure 4.1: Illustration of a simple blocking approach with blocks of fixed size.

The BCSR format, as already mentioned, was one of the first blocked storage
formats. It uses blocks of a fixed size and works on fixed alignments only, which
means that possible positions of blocks are predefined by the block size. Only those
blocks are stored, which contain at least one non-zero element. The alignment
restriction allows a very efficient creation of the format (Constraint C6) and also
simplifies the SpMV calculation. The main drawback of it is a possibly much higher
amount of padding, depending on the matrix structure and block size.

Instead of using a fixed grid for finding and storing the blocks, the Variable Block
Row (VBR) format [76] defines a grid depending on the non-zero structure. The
matrix is therefore divided in ever smaller parts until all dense blocks are identified.
The format creation requires much more effort compared to the BCSR format.
Dynamic blocks require a more complex structure of the format, as additional
meta information have to be stored. The Variable Block Length (VBL) format [71]
is an example for a format that uses a one dimensional blocking. The format stores
non-zero elements of continues columns into single blocks of variable length. The
publication also discusses the possibility of using reordering to increase the size of
the dense sub-structures and therefore increase the efficiency of the blocking. The
Unaligned BCSR (UBCSR) format [88] got rid of the alignment restriction of the
BCSR format and allows the storage of differently sized blocks.

Most of the presented blocked formats are based on the CSR format, but there
also existed blocking approaches based on other formats. The ELL based format
Blocked ELLpack (BELLpack) [14] was proposed with further optimizations which
mostly handle the padding issues introduced by ELL. Yan et al. [92] presented the
Blocked Compressed COO (BCCOO) format which is based on the COO format.

Beside the approaches based on simple rectangular block structures, formats
have been proposed that take advantage of more complex non-zero patterns. Fig-
ure 4.2 illustrates the general concept of pattern based approaches. Pattern based
approaches also aim to reduce the overall memory demand of the format (Re-
quirement R1). In difference to simple blocked formats, pattern based approaches
can handle matrices with more complex structures. One issue with pattern based
formats is the process of identifying patterns, which can have a high computa-
tional complexity [38, p. 111ff.]. This potentially leads to longer creation times
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Figure 4.2: Illustration of a pattern detection based approach.
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Figure 4.3: Illustration of the utilization of diagonal and symmetric properties.

(Constraint C6). Another problem can be the number of used patterns. A high
number of different patterns can lead to a large number of possible execution paths
(Constraint C5).

The Pattern-based Representation (PBR) format [6] uses a relatively easy ap-
proach for the identification of patterns. Very similar to the BCSR format a grid
with a fixed size is assumed. Repeating patterns are searched in each of the cells
of the grid.

Karakasis et al. [38] proposed a more sophisticated pattern detection strategy,
used in the Compressed Sparse eXtended (CSX) format. The patterns have to be
defined by hand beforehand, but they are searched in the complete matrix and not
only in a fixed size grid as for the PBR format.

4.2 Exploitation of Other Structural Properties

The techniques described in the previous section exploit specific structural prop-
erties of a matrix. This is a very basic concept, that was already used in some of
the first published sparse matrix formats.

For example the utilization of diagonal structures, as shown in Figure 4.3a, can
be very advantageous. The Diagonal (DIA) format [77] stores all diagonals of a
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matrix that contain a non-zero element using two arrays. One array is used to
store the actual non-zero elements and depending on the structure padding. The
second array stores the position, or offset, of the diagonals. Exploiting the diagonal
structure of a matrix is a very efficient way for reducing the memory demand
(Requirement R1). It is very efficient, as no explicit row or column information
is required. This means only the non-zero values itself and a small offset array is
required for storing the matrix.

In diagonal formats the properties of diagonal matrices can be utilized to improve
the performance of the SpMV operation. The accesses on the ~x vector for exam-
ple are consecutive and can therefore be very good prefetched (Requirement R3
and R4). It also allows good memory alignment (Constraint C4) and good vector-
ization (Requirement R5). Depending on the position and number of diagonals,
the cache reuse of the ~x vector can also be very high, which reduces the required
memory bandwidth (Requirement R2).

The biggest disadvantage of these type of formats is their sensitivity on changes
in the matrix structure. Very similar to the ELL format (see Section 2.1.3) a small
number of additional non-zero elements can result in a lot of padding that increases
the memory demand significantly.

There exist other formats that exploit the diagonal properties of a matrix. One
example is the Banded Diagonal (BDIA) format [83], that stores bands of diagonal
elements instead of single diagonals, which further reduces the memory demand.

The properties of symmetrical matrices can also be exploited, at least in theory.
Symmetrical matrices have the same non-zero entries below and above the main
diagonal. This could be utilized by storing the non-zero elements only once, which
could cut the memory demand in half (Requirement R1). This is illustrated by
Figure 4.3b.

The main problem of this approach is the implementation of a parallel SpMV-
operation. The required data structure can not allow a row based access on the
matrix elements, which unavoidably introduces the need for additional synchro-
nization on the ~y vector (Constraint C3). Not many approaches could be found
utilizing the symmetric property. The publication of Krotkiewski et al. [46] de-
scribes one approach, using MPI parallelism.

4.3 The ELL Storage Scheme

The ELL storage scheme was developed to allow efficient operations on vector
based machines and today they are mostly used on GPU based systems. The ELL
format uses an interleaving pattern for storing the non-zero elements as described
in Section 2.1.3.

The format works very well for vector processors (Requirement R5) like GPUs,
with appropriate matrices, because all elements are accessible in the right order
(Requirement R4). Additionally all rows are padded to the same length which
results in a perfect data alignment (Constraint C4). The padding is also the biggest
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drawback of all ELL based storage formats, as it can increase the storage demand
dramatically (Requirement R1).

The padding can be reduced by slicing the matrix horizontally into multiple parts
as introduced by the Sliced ELLpack (SELL) format [57] and the Sliced ELLR-T
(SELLR-T) format [16]. The padding is applied in each slice individually, which
can reduce the overall required padding significantly.

The ELL-Warp [91] format uses an additional global reordering of the matrix
rows, by their length, to further reduce the padding. As similarly long rows are
grouped together by the sorting, a slicing can more efficiently reduce the required
padding. A global reordering can have negative effects on the locality, what is why
Kreutzer et al. [4, 45] proposed a local reordering for their SELL-C-σ and SELL-
P formats. The area of the reordering is thereby multiple slices big, which allows
some improvements regarding the padding without completely loosing locality. The
ELLpack Sparse Block (ESB) format [53] is very similar to SELL-C-σ, but was
mainly developed for the Xeon Phi platform instead of GPUs. It uses a bit-masking
that is used with the vector units to reduce the required memory bandwidth by
not loading padding elements.

The ELL scheme is also used in blocked formats like BELLpack [14]. Dense
blocks are thereby stored in an interleaving pattern. The padding is applied on
a block level, with the same drawbacks as for the normal ELL format. The same
techniques like slicing and reordering can be used to reduce the amount of padding.

4.4 Hybrid and Hierarchical Storage Formats

Hybrid and hierarchical storage formats store parts of the matrix using different
matrix formats. The difference between these two type of formats is not clearly
defined. Most often hybrid formats consist of two formats. The first format usually
utilizes specific matrix properties, like ELL or DIA. The second format is used to
store elements which can be disadvantageous for the first format. This is illustrated
by Figure 4.4 with the first format being DIA. The elements in the second matrix
are typically called remainder elements.

Hierarchical formats can utilize a larger number of different formats. Sparse ma-
trices often consist of different regions with different structural properties. One hi-
erarchical concept is the use of multiple formats for efficiently storing these different
parts. The matrix is therefore partitioned into multiple sub-matrices. Figure 4.4
illustrates this one version of a hierarchical format. As the concepts of hybrid and
hierarchical matrices are very similar the advantages and disadvantages are very
similar and are therefore discussed together.

One of the first formats using a hybrid approach was the Hybrid (HYB) format [7]
which combines the ELL format with the COO format. This is used to reduce the
padding of the ELL format, very similar to the example presented in Figure 4.4.
Matam et al. [54] proposed the combination of the ELL and CSR format. Very
similar the BCSR Decomposed (BCSR-DEC) format [37] uses a combination of
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Figure 4.4: Example for the basic concept of hybrid (left) and hierarchical (right)
storage formats.

BCSR and CSR. This is useful, as the BCSR format is also very sensitive regarding
the matrix structure and can require a lot of padding.

The Cocktail format [83] is one example for an hierarchical approach. The ma-
trix is partitioned depending on the matrix structure and various different matrix
formats are used for representing them. A completely different hierarchical ap-
proach is used in the Hierarchical Sparse Matrix Storage (HiSM) format [82]. It is
a combination of the BCSR and the COO format. The format stores large BCSR
blocks and prevents padding by using a bit compressed COO format for storing
the non-zero elements in these blocks.

The use of hybrid or hierarchical approaches can have many advantages, depend-
ing on the used formats. It is therefore not possible to mention general advantages
and the corresponding requirements for these types of formats in general. The only
advantage most of these formats have in common is a reduction of the memory de-
mand (Requirement R1).

Hybrid and hierarchical formats also have some possible disadvantages. One issue
nearly all hybrid and hierarchical approaches have in common is that they have to
execute the SpMV operation multiple times, once for every sub-matrix. Depending
on the partitioning this is no problem, but if elements of the same row are stored
in different sub-matrices different problems may occur. The calculation of multiple
sub-matrices in parallel can result in parallel access on the ~y vector which would
require additional synchronization for the write operations (Constraint C3).

The matrix creation for these types of formats is very complex (Constraint C6).
The identification of specific matrix structures and sub-structures is a very complex
problem. In reasonable time, most often only an approximation of an optimal
matrix partitioning can be calculated.
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columnIndex:

32 bit representation:

basic compression

... 0 9 30 920 1080 ...

00000000 00000000 00000100 00111000

11 bit required

delta encoding

... 0 9 21 890 160 ...

00000000 00000000 00000000 10100000

8 bit required

Figure 4.5: Example for a basic bit compression approach (left) and bit compression
with delta encoding (right).

4.5 Index and Value Compression

The index structures of a matrix typically consists of multiple integer arrays which
are stored using 32 or 64 bit integer values. Often smaller data types would be
enough for storing the whole index structures or at least parts of it. Addition-
ally there exist different approaches for lossless compressing the index structures.
Clearly the aim of the compression is a reduced memory demand (Requirement R1).
Figure 4.5 illustrates the possible reduction in memory demand by using a simple
compression technique. It also shows the benefit of using delta encoding, which is
mentioned later in this section.

A very early use of index compression was in the HiSM format [82]. It stores
sparse blocks of a fixed size in the COO format. As the size of the blocks is much
smaller, compared to the matrix dimensions, a much smaller data type is sufficient
for storing the local indices. A row and column offset is additionally stored for each
of the blocks, which allows the calculation of the global position of each element.
Very similar techniques are also utilized in the Compressed Sparse Block (CSB) [11]
and BCCOO [92] formats. The Bit Level Single Row (BLSI) format [73] uses a very
similar technique and compresses the column and row indices of the COO format
into a single integer array. It divides the matrix into multiple parts and stores the
offset information to every part into an additional array.

More sophisticated approaches were proposed by Buluc et al. [41] with the CSR
Delta Unit (CSR-DU) and CSR Value Indexed (CSR-VI) formats. The index
compression of the CSR-DU format is based on a delta calculation of the column
indices. Each column index is stored as difference to the previous index, which
reduces the possible number range that have to be stored. The final index structure
is stored in a kind of package structure, where each package contains some header
information and bit compressed index information. This structure does not only
contain the column information but also the row indices.

The CSR-VI format [41] focuses on a value compression approach. The values
of a matrix are typically floating point values, which are much harder to compress,
compared to integer values. The reason for this is the more complex bit repre-
sentation of floating point values and a more efficient use of the available bits to
allow maximal possible precision. The CSR-VI format therefore does not try to
reduce the memory demand for the floating point values itself and instead tries to
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exploit the fact that identical values may exist multiple times. A new values array
is created which contains only the unique non-zero values. An additional index
structure is required, which points to the correct value for each non-zero entry in
the matrix.

The Combine Optimized SpMV for CSR (COSC) format [94] is based on the
CSR-DU and CSR-VI formats and uses a combination of the index and the value
compression. The CSX format [38] is also based on the CSR-DU format, but
extends the compression even further. It uses a run-length encoding which stores
repeating patterns of delta values as the delta value and the number of occurrences.

Tang et al. [85] proposed a new compression technique called Bit Representation
Optimizations (BRO), which is similar to the technique used in CSR-DU. It also
uses a delta compression, in the first step, to reduce the number space. The
compression is most effective for a sliced ELL format. For each ELL-column and
slice the maximum number of bits required for storing all indices in this column
are identified. The values are then compressed using these sizes.

While all compression techniques aim the main issue of the SpMV operation
by trying to reduce the memory demand, they also potentially come with major
drawbacks. The most effective compression techniques (regarding space savings)
require additional meta information for the later decompression. The decompres-
sion itself can also be a bottleneck by potentially introducing excessive branching
(Constraint C5). The type of compression also has to be selected carefully regard-
ing the possible utilization of vector units (Requirement R5) and memory alignment
(Constraint C4).

4.6 Vertical Tiling

Yang et al. [93] proposed a vertical partitioning of matrices, later on called vertical
tiling or just tiling. If the size of the tiles is selected properly this approach can im-
prove the cache reuse of the SpMV operation (Requirement R2). This is achieved,
as each tile contains only a limited number of columns, which relate to a limited
number of relevant entries of the ~x vector. Figure 4.6 illustrates this concept and
shows the memory accesses of a matrix with vertical tiling.

Yang et al. [93] also proposed the additional use of a column reordering, so that
the columns with the most entries are close together. A very similar approach was
also used for the BCCOO [92] and Vectorized Hybrid COO+CSR (VHCC) [84]
formats. This allows the use of a smaller number of tiles by tiling only the regions
of the matrix with a higher non-zero density.

The size of the tiles has to be configured to match the cache size. If the L3
cache of an CPU-based system should be used, the tiles of an matrix can no longer
be calculated in parallel. As the L3 cache is shared between the different cores,
the accesses in the different tiles would replace cache lines in the L3. Addition-
ally the parallel calculation of multiple tiles has the disadvantage of parallel write
accesses on the ~y vector (Constraint C1) which also requires synchronization (Con-
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Figure 4.6: Memory accesses in a matrix with vertical tiling.

straint C3).

4.7 Matrix Reordering

Another technique, that is used for multiple reasons, is matrix reordering. It is often
used in combination with ELL based formats and slicing approaches to reduce the
amount of required padding, which reduces the memory demand of the format
(Requirement R1). The Jagged Diagonal Storage (JDS) format [75] was one of the
first formats using this technique. The more recent SELL-C-σ format [45] format
also uses reordering to reduce the padding of the ELL based format. The difference
is, that only a local instead of a global reordering is used.

The main reason for this is, that a matrix reordering can reduce the locality
of memory accesses and therefore reduce the caching on the ~x vector (Require-
ment R2). Doing the reordering only locally can, in theory, preserve the locality.

While reordering can reduce the locality of memory accesses, it is also used to
reach the opposite [70]. By reordering the non-zero elements of the matrix in such
way, that identical or similar column indexes are grouped together, the locality can
be increased. The main drawback of this approach is the complexity of calculating
a good reordering. This significantly increases the creating time of the matrix
(Constraint C6). Reordering can also be used for creating diagonal structures.
The diagonal properties can be utilized as already described in Section 4.2.

4.8 Row Grouping and Row Splitting

The matrix structure has a significant impact on the performance of most matrix
formats. For formats that use row-based calculations, one major problem often is
the varying number of non-zero elements per row of a matrix. The calculation of
short rows can be inefficient, because the load of meta information can be slow
compared to the actual calculations. Very long rows on the other side require more
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time to be calculated than other rows, which can lead to load imbalances in case
of parallel computations.

One way of solving these problems is by grouping short rows together into sin-
gle, longer rows and splitting long rows into multiple smaller ones. This allows for
smaller calculation overhead and better load balancing (Requirement R6). Averag-
ing the number of non-zeros per row can also have a positive effect on the possibility
to use vector units for the calculation (Requirement R5). Disadvantages of these
approaches is the additional branching, required to differentiate between the differ-
ent types of rows (Constraint C5). Splitting one row into multiple rows also may
require parallel write accesses to the same elements of the ~y vector which results
in additional synchronization (Constraint C3).

Feng et al. [18] proposed the Segmented Interleave Combination (SIC) format,
which combines multiple CSR rows into larger rows using an interleaving pattern.
This results in an ELL style data structure, which can efficiently be used especially
on GPUs. Wong et al. [91] proposed the ELL-Warp format, which also allows
splitting long rows into multiple parts using the ELL format. Oberhuber et al. [67]
proposed a format called Row Grouped CSR. The name can be misleading, as it
uses a splitting technique for very long rows. The Compressed Multirow Storage
(CMRS) format [42] also groups multiple rows together and is based on CSR. The
format can reuse the original values and column index arrays.

4.9 Segmented Sum Algorithm Based Calculations

Most of the established methods use a row based approach for the calculation
of the SpMV operation. This has the advantage that no synchronization between
multiple threads is required, as each row can be calculated independent of all others
(Constraint C3). One big problem with this approach is that the load balance
mostly depends on the matrix structure, or more specifically on the number of non-
zero element in the rows. Possible solutions have been presented in the previous
Section 4.8.

A quite new approach for solving this problem is the use of a segmented sum
algorithm [78] for the SpMV calculation. The segmented sum algorithm works very
similar to a simple prefix operation. Instead of calculating a single prefix operation
for the full number sequence, the sequence is divided into multiple segments. The
result of the prefix operation is than calculated for each segment individually. One
big advantage of this approach is a very good load balancing, as all elements of
the matrix are evenly distributed to the available hardware resources (Require-
ment R6). This means the load balance is independent of the matrix structure.
Another benefit is the possibly high utilization of vector units (Requirement R5),
as the row boundaries are not important when iterating over the matrix values.
This also allows a proper memory alignment (Constraint C4). The drawback of this
method is additional synchronization, that can not be avoided (Constraint C3).

The BCCOO format [92] stores sparse blocks in the COO format. It uses a

38



4.10 Discussion and Summary

segmented sum algorithm to efficiently calculate the SpMV operation. The VHCC
format [84] also uses a segmented sum instead of a classical row-based operation.

The CSR5 format [51] is based on the CSR format. The segmented sum is used to
improve the load balance, but it also provides an efficient SpMV operation for vector
processors, like GPUs. The CSR5 format introduces additional data structures,
including a bit-string, to allow a very efficient segmented sum calculation. It also
has a very low conversion overhead from the CSR format [51].

The Perfect CSR (PCSR) format [23] is also based on CSR and similar to CSR5.
Instead of executing the segmented sum directly on the CSR data, they use a
temporary array for storing the products of the non-zeros and the ~x vector.

Liu et al. [52] proposed an approach called Speculative Segmented Sum CSR,
where the SpMV operation is divided into two phases. In the first phase the seg-
mented sum is calculated without global synchronization, which potentially leads
to wrong results. In a second phase all relevant results are corrected. The main
advantage is the reduced amount of synchronization (Constraint C3).

4.10 Discussion and Summary

The previous sections discussed many different possible techniques for optimizing
the SpMV operation on different platforms. Table 4.1 summarizes the requirements
and the identified optimization techniques that can be used to fulfill them.

It can be seen, that most optimizations focus on the reduction of the memory
demand, data reuse and improved memory accesses, which is reasonable as that
the SpMV operation is memory bounded. Still it can be seen that there are many
optimization techniques that can be used to improve the use of vector units. Partly
this may be motivated by the fact that GPUs are in the focus of many developed
formats.

One very big issue with the SpMV operation are the irregular accesses on the
~x vector. No optimizations could be found that focus on the reduction of the
memory access latency on the ~x vector, beside the utilization of structural matrix
properties.
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Requirement Optimization Techniques

R1 reduce amount of moved data
by reducing the overall memory
demand

· Slicing for ELL type formats to reduce padding
· Reordering (with ELL / slicing)
· Blocking and pattern detection
· Exploitation of structural properties (e.g., diago-

nal, symmetric)
· Index and value compression
· Hybrid and hierarchical approaches

R2 allow / improve data reuse of
the ~x vector

· Vertical tiling
· Reordering
· Blocking and pattern detection
· Exploit diagonal properties

R3 improve access latency on the ~x
vector

· Exploit diagonal properties

R4 allow / improve consecutive
memory accesses

· Blocking and pattern detection
· ELL-style data layout
· Row grouping and splitting
· Segmented sum instead of row-based calculations

R5 allow / improve utilization of
vector units

· Blocking and pattern detection
· ELL-style data layout
· Exploit diagonal properties
· Row grouping and splitting
· Segmented sum instead of row-based calculations

R6 allow / improve load balancing
of the SpMV

· Row grouping and splitting
· Segmented sum instead of row-based calculations

Table 4.1: Summary of the requirements and the optimizations techniques that can
fulfill them.
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In the two previous chapters the requirements and constraints for developing a
proper sparse matrix format and the existing optimization techniques have been
identified. In this chapter new efficient sparse matrix formats will be developed,
based on the knowledge gained in these chapters. Basically matrix formats are
combinations of optimization techniques. Even though, not all combinations of
optimization techniques are possible or feasible, the number of possible combina-
tions is high. Additionally the three relevant hardware platforms require different
optimizations for reaching sufficient performance. Therefore, multiple matrix for-
mats will be developed with different optimization goals. A reasonable combination
of optimization techniques will be utilized for reaching these goals. Focusing on
specific requirements in the development process does not imply that other require-
ments are neglected. If multiple optimization techniques are feasible, the one that
satisfies the optimization goals best is used.

In the development process it is not sufficient to select some of these techniques
and just combine them to a new format. Instead nearly all optimization techniques
are rather basic ideas, which can be implemented in many different ways. For
example, bit compression techniques are supposed to reduce the memory amount
of a format. This bit compression can be achieved by simply using smaller data type
or by storing multiple indexes in a single integer value. Using multiple optimization
techniques requires the combination of different basic ideas in an efficient new data
structure.

In the following sections the development of the three new formats is described.
The sections are thereby structured into the motivation and the theory behind the
development, a detailed description of the formats and a discussion.

The rest of the chapter is structured as follows: First the three newly devel-
oped formats CSR5 Bit Compressed (CSR5BC), Hybrid Compressed Slice Storage
(HCSS) and Local Group Compressed Sparse Row (LGCSR) are presented. After-
wards the optimization of the existing DynB format using a autotuning approach
is described. The chapter closes with a summary and discussion of the presented
formats.

5.1 Development of CSR5 Bit Compressed – CSR5BC

The optimization goal of the new CSR5BC format is the development of a format
with a structure independent load balancing (Requirement R6). This means that
the calculations of the SpMV operation can be divided into equal parts, regardless
of the structure of the matrix and the non-zero distribution. This goal cannot
be achieved using traditional row-based approaches, as the occurrence of one row
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with much more non-zero elements than the other rows can result in significant
load imbalances. One solution for this problem is the use of row splitting and
row grouping approaches (see Section 4.8). This approach solves the problem
only partially, as after the splitting of long and grouping of short rows, still a
distribution has to be determined. Another possible approach is the use of a
segmented sum based algorithm (see Section 4.9). This allows a calculation of
the SpMV independent of row boundaries, which simplifies the work distribution
significantly. As the work can be distributed regardless of row boundaries, each
thread can work on a fixed number of non-zero elements. Therefore, this approach
is used for the CSR5BC format.

The independence of row boundaries also simplifies the efficient utilization of
vector units (Requirement R5). When processing elements of a single row, one
factor that influences the efficiency of the vector unit utilization is the number of
non-zero elements. If the number of elements in the row is not dividable by the
vector unit size, the vector unit is not fully utilized in the last iteration. Without
the row boundaries, this problem can only occur once for every thread instead of
at the end of every row.

The row boundary independent calculation also allows properly aligned vec-
tor calculations and consecutive memory accesses (Constraint C4 and Require-
ment R4). As long as the initial vector operation is executed on a proper memory
boundary, all following operations are aligned and consecutive. Again, this is dif-
ferent for most row-based approaches, where it is important that the first element
of each row is aligned.

As described in the previous chapter, the SpMV operation is a memory bound
operation (Requirement R1). Since the goal of the format is a structural indepen-
dent load balancing, exploiting structural properties is not suitable for a memory
reduction. Two other techniques for reducing the memory demand have been iden-
tified in the previous chapter: Index and value compression techniques. Value
compression is based on storing unique non-zero values only once, requiring an
additional index array for every non-zero element (see Section 4.5). This technique
introduces a significant amount of additional indirect memory accesses. Further-
more the efficiency of the compression strongly depends on the non-zero values.
Because of this drawbacks a index compression technique is used instead.

Description of the CSR5 Format

The CSR5 format [51] by Liu et al. considers most of the above motivated aspects.
Furthermore, the implementation of the format is available as open source code
for all, for this work, relevant hardware platforms. The SpMV of the format is
based on an efficient segmented sum algorithm, but it does not implement any
index compression techniques. The CSR5BC format is therefore based on the work
of Liu et al. and primarily extends the CSR5 format with an additional index
compression. In the following, the fundamental concepts of the existing CSR5
format are explained. For a more detailed description, the original publication

42



5.1 Development of CSR5 Bit Compressed – CSR5BC

Figure 5.1: Data structures of the CSR5 format [51].

can be consulted [51]. Afterwards the CSR5BC format with the additional index
compression is described.

Figure 5.1 presents the complex data structures of the CSR5 format. The CSR5
format stores the non-zero elements in two dimensional blocks of fixed size, called
tiles (left half of Figure 5.1). These tiles are used to simplify the data management
and the distribution of the non-zero entries to the threads. The tiles should not
be mistaken with blocks in blocked storage formats, they only serve as a kind of
container for managing the non-zero entries. The size of the tiles is defined by the
two tuning parameters σ and ω. The width of the tiles, or ω, thereby matches the
width of the available vector units, while for the selection of σ a simple heuristic
is provided. It is also important that the non-zero elements in the tiles are stored
in column-major order. The column index and value arrays of the CSR format are
used for storing the slices.

To allow an efficient calculation of the segmented sum, additional meta informa-
tion for each tile is required. The tile ptr stores the matrix row of the first element
in the slice, which allows a parallel processing of the tiles. In Addition the tile desc
stores 4 additional arrays for each tile, which are necessary for reaching a high
segmented sum performance. A bit flag of size ω× σ is used to mark non-zero ele-
ments that are the first elements of a row. The y offset array stores the row of the
first element of each column of the tile. This allows the independent processing of
each column. Without the offset, the processing depends on all previous columns,
because the number of new rows (encoded in bit flag) is not known beforehand.
This is important, as the SpMV operations processes the columns of a tile in par-
allel using the available vector units. The seg offset array is used to improve the
performance of the local segmented sum operation. For each column, it stores the
number of new beginning rows in the next column. The empty offset array is used
if the matrix contains empty rows, i.e., rows without any non-zero elements. This
is necessary, because the bit flag array can only encode the beginning of a new row
for a non-zero element. Since the empty rows do not contain any non-zero elements
the additional array is required.
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Figure 5.2: Example for the index compression technique used in CSR5BC.

Description of the Extensions in the CSR5BC Format

Figure 5.2 illustrates the new index compression technique introduced in CSR5BC.
The compression reduces the size of the columnIndex array and requires one ad-
ditional array with slice meta information called compressionPointer. It can be
seen that in a first step a column-wise delta encoding is used to reduce the number
range. Before this is actually done, the smallest index in the whole slice is identi-
fied and the value is subtracted from all indexes. This value is called global offset,
and is stored in the compressionPointer. This process further reduces the overall
number range of the indexes.

In the next step, the indexes are packed tightly into the columnIndex array. The
number of stored bits is fixed per row and is therefore determined by the biggest
index per row. The number of bits required for every row of the slice is also stored
in the compressionPointer. As the number of bits can only be between 1 and 32
bits, 6 bits are enough for storing the information. The information is therefore
also bit-packed, which reduces the meta information overhead.

It is important at this point, that the delta encoding is done column-wise and
that all elements in the same row are encoded using the same number of bits. The
first one allows a independent calculation of the elements of every column, which
is important as they are processed in parallel by the vector units. The common
number of bits ensures consecutive memory accesses (Requirement R4), as the
amount of loaded data is identical for each lane of the vector unit.

In the standard CSR5 format, the starting position of the slices in the values
and columnIndex arrays can easily be calculated, because the slices contain a fixed
number of entries. In the compressed case of CSR5BC this is no longer true for the
columnIndex array. The number of entries per slice in the columnIndex is variable,
as the efficiency of the compression depends on the occurring column indexes. To
still allow independent calculation of the slices, the compressionPointer array holds
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an additional pointer to the first element of the slice in the columnIndex array.

Discussion

The presented CSR5BC format does respect many of the identified requirements
and constraints. The memory demand is reduced by using index compression,
memory accesses are consecutive, the efficient utilization of vector units is possible
and a proper load balancing is expected (Requirements R1, R4, R5 and R6). It
does not improve the data reuse of the ~x vector (Requirement R2), which is hardly
possible without utilizing structural properties of the matrix. The only structural
independent technique is a vertical partitioning, of the matrix (see Section 4.6).
But this introduces many new problems, like the need of additional synchronization
on the ~y vector. Because of this, no tiling approach has not been used. The access
latency on the ~x vector is also not improved by the format (Requirement R3), as
no structural independent optimization technique could be found.

Each thread processes a big, consecutive partition of the matrix, which prevents
interleaved write operations on the ~y vector and allows a NUMA aware imple-
mentation (Constraints C1 and C2). The segmented sum algorithm uses small
additional data structures to completely prevent synchronized write operations on
the ~y vector and the tile layout allows proper memory alignment (Constraints C3
and C4). The creation process of the format does not require any expensive oper-
ations like reordering or pattern detection. Even though the bit compression does
require multiple iterations over the matrix data, the conversion should be efficient
(Constraint C6). The values array of the CSR5BC format is created from the
values arrays of the CSR format by transposing elements. The calculation of the
memory location of a matrix element is therefore straightforward, which allows
efficient element updates (Constraint C7). Furthermore each tile of the format can
be calculated independent of other tiles, which in theory allows the asynchronous
computation of the CSR5BC format (Constraint C8). This will not be implemented
in practice, because the used software framework (see Chapter 6) does not provide
this type of operation. The only tuning parameters of the CSR5BC format are the
dimensions of the used tiles, where one is defined by the size of the vector units,
and the other one can be determined by using a simple heuristic, which is provided
by the CSR5 format (Constraint C8).

Overall the CSR5BC format fulfills most of the identified requirements and con-
straints. It should therefore be suitable for the efficient calculation of the SpMV
operations on all for this work relevant hardware platforms. Nevertheless there are
some possible disadvantages. The format requires quite sophisticated and extensive
meta information, which increase the overall memory consumption. Furthermore
the SpMV operation is quite complex, which may have negative effects on the
performance. The complex data layout may result in additional branching (Con-
straint C5). Another negative aspect is that the data layout depends on the size
of the vector units. This could be a disadvantage if a matrix should, for example,
be transferred from a CPU to a GPU which has another vector unit size. In this
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case the matrix has to be recreated with the proper tile dimensions.
The CSR5BC format has been developed to be independent of the matrix struc-

ture. Therefore it should be applicable for most matrices and deliver a consistent
performance. It is expected, that more specialized formats deliver better perfor-
mance for matrices with specific properties.

The data structures of the format are very complex and the compression partially
depends on the matrix structure. The estimated memory consumption can be
calculated by:

mCSR5BC ≈ nnz × Sfloat //values

+ nnz × Sint × fcomp //colIndex

+ nTiles× Sint //tileP tr

+ nTiles× (d(log2(ω × σ) + log2(ω) + σ)/Sinte × Sint × ω) //tileDesc

+ nTiles× (2× Sint + d(6× σ)/Sinte × Sint) //comprPtr

The size of the values vector is identic to the CSR format. The columnIndex array
is compressed by the factor fcomp, compared to the CSR format. Additionally
for each tile one additional integer is stored in the tilePtr. The required meta
information in the tileDescriptor array are highly compressed. One bit for every
element is required for the bit-flag array, the size of the y offset and seg offset
arrays depend on the dimensions of the slices. The empty offset is not considered
in the equation, as it is not required in most matrices. Furthermore two additional
integer values and 6 bit per slices row are stored in the compressionPtr.

The equation can be defined more compact, the relation of nTiles = nnz/(σ×ω)
is thereby additionally used:

mCSR5BC ≈ nnz × (Sfloat + Sint × fcomp +
Sint
ω × σ

× [3 + d(log2(σ) + 2 log2(ω) + σ)/Sinte × ω + d(6× σ)/Sinte])

To allow the actual comparison of the different matrix formats, some assump-
tions about the matrix structure and used platform have to be done. The average
number of non-zero elements per row is important for the estimation of the mem-
ory consumption for most formats. By determining the average over a large set of
matrices (see Chapter 7), the number of non-zero elements per row was selected to
be 64. Vector units are assumed to be 4 elements wide, which is the vector size of
the current Intel Haswell architecture. For the CSR5BC format this means σ is 64
and ω is 4. The data size for floating point values, Sfloat, is defined as 64 bit and
integer values, Sint, are defined as 32 bit values. For the mentioned set of matrices
the average compression of the index data structures has been determined empiri-
cally to be about 0.31. Using these assumptions, the average memory consumption
of the format per non-zero element can be calculated:

m nnzCSR5BC ≈ nnz × 77.3
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Interpreting this number is not possible at this point, as a reference to other formats
is required. This comparison is done in the last section of this chapter.

5.2 Development of Hybrid Compressed Slice
Storage – HCSS

The optimization goal of the HCSS format is on the utilization of vector units
(Requirement R5). This should be achieved while preventing the need for complex
or large meta information as well as a complex SpMV kernel. It has already been
motivated in the previous chapters, that vector units are present in all architectures
and getting more important in the future. For reaching a good vector unit utiliza-
tion the memory accesses have to be consecutive (Requirement R4) and properly
aligned (Constraint C4). For a proper alignment, not only the beginning of the
arrays have to be aligned to the proper boundaries, but also the accesses to these
elements need to be aligned as well. Ignoring the alignment of the data accesses
does not prevent vectorization, but can reduce the used width of the vector units
or can result in inefficient and therefore slower memory accesses.

Keeping the additional meta information of the format simple and small also
keeps the overall memory consumption of the format low. Additional techniques
should be used to further reduce the memory consumption (Requirement R1). One
possible option is the utilization of matrix properties, like blocking or pattern de-
tection, to reduce the amount of index information. While this can be suitable
to reduce the memory consumption of the format, it can also add additional com-
plexity to the format. Additionally the type of used blocks or patterns can have a
significant impact on the efficiency of the vectorization. Limiting the format only
to suitable block sizes or patterns can reduce the efficiency of the blocking as it
can introduce excessive fill-in. The other option is the use of a index compression.
In comparison to the CSR5BC format a simpler approach is chosen. The bit com-
pression in the CSR5BC format allows the encoding of column index information
of variable length. While this allows a very high reduction of the required memory,
it also requires additional meta information, e.g, the number of stored bits. This
approach can also have negative effects on the memory alignment, as the alignment
of the column index information depends on the compression factor of the previous
indexes. For the HCSS format the use of bit compression with a fixed length is
therefore more suitable. This requires no additional meta information for the com-
pression itself, and allows proper data alignment for the vector units, depending
on the selected bit length. The number of bits used for the compression should be
a divider of the used data type size (e.g. 16 bit for a 32 bit data type).

Providing proper load balancing is another important requirement that should
be respected by the HCSS format (Requirement R6). The load balance is improved
by splitting the matrix into multiple partitions depending on the number of non-
zero elements. The partitioning should distribute the non-zero elements as evenly
as possible between the threads. The slice structure of the HCSS formats needs to
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Figure 5.3: Calculation of the ELL (left) and modified CSR (right) slices using
vector units in the HCSS format.

be respected as well.

Description of the HCSS Format

The optimization goal of the HCSS format is to reach a high vector unit utilization.
Figure 5.3 shows the usage of vector units with a column-major order formats like
ELL and row-major order formats like CSR. In ELL based formats vector units
are used to process multiple rows at once, which allows a very efficient calculation.
Memory accesses can be easily aligned and consecutive. Furthermore after calcu-
lating the last elements of the rows, the result of the vector unit is simply written
to the ~y vector.

In CSR based formats on the other side, vector units process elements of the
same row. This requires an additional reduction operation at the end of every row,
as the partial results of the vector unit lanes have to be combined. The proper
memory alignment depends on the number of entries in every row and therefore
creating a proper alignment requires additional fill-in.

Overall the ELL format is therefore better suited to reach a high vector unit uti-
lization. But, classic ELL based formats are very sensitive to the matrix structure,
which makes them unsuitable in many cases (see Section 2.1.3). The basic idea
of the HCSS format is to create a lightweight hybrid format that combines both
concepts. The format should be lightweight regarding the required amount of ad-
ditional meta information and control flow, branching should be avoided whenever
possible (Constraint C5).

To avoid creating multiple index structures, both storage types are combined in
a single data structure. Therefore the matrix is row-wise partitioned in equally
sized slices (every slice contains the same number of rows). Each slice is stored in
one of the supported matrix types. One important design principle of the format
is, that the number elements in every slice should be a multiple of the vector size.
This ensures proper memory alignment, as every slice begins at a proper memory
boundary. Furthermore the number of rows in every slices matches the vector unit
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size. This allows the efficient calculation of slices stored in the ELL format.
Since the ELL format is the better suited format for the use with vector units,

it should be used for most of the slices. Only if the use of the ELL format requires
to much fill-in, a modified version of the CSR format is used instead. This is
the case for slices that contain rows with strongly varying number of non-zero
elements. Storing these slices in ELL leads to excessive padding, which is not
the case for CSR. The classic CSR format has the disadvantage that the non-zero
elements of the different rows are not properly aligned. Therefore, a padding is
introduced that ensures that each row contains a multiple of the vector size number
of elements. This leads to fully aligned memory accesses for every row, as illustrated
in Figure 5.3. It also ensures that the number of overall stored elements in a CSR
slice is a multiple of the vector size.

As described in the beginning of this section, an index compression with a fixed
number of bits should be used to further reduce the memory demand of the format.
One additional requirement of the compression is that it should have no negative
effect on the vector unit utilization. Using a fixed number of bits for the compres-
sion does not allow the compression of all slices of the matrix. If the structure of
the rows in the slice is disadvantageous, the column indexes can not be stored in a
compressed manner. This is the case if the elements of a row are spread out very
far from reach other. These structures can result in very large column indexes,
even if a delta encoding is used to reduce the number space. As the HCSS format
is capable auf handling different formats for each slice anyway, a new slice type is
introduced, which is a compressed variation of the ELL format.

The compressed slices have the following structure. In a first step a delta encod-
ing is used to reduce the potential number range (see Section 4.5). After the delta
encoding all elements are stored using only 16 bit instead of 32 bit, which halves
the memory requirement for the index data. As the first element of each row is not
effected by the delta compression, it will often be quite large and would prevent
the use of the compression. For this reason the first element is always stored using
32 bit.

In theory more different slice types are possible, as long as the number is not
getting to large (e.g., prevent branching). In this work only these three slice types
are used, to prove the general concept of the format. The selection of the proper
slice type is important for reaching good performance. At this point it is only
defined that all slices should be stored in ELL or compressed ELL if possible. Only
slices that would require excessive padding should be stored using CSR. The exact
process of selecting the slice type is described in more detail in the next chapter
on implementation details (see Section 6.2).

Figure 5.4 shows the data structures of the HCSS format with an example matrix.
The HCSS format requires 5 arrays for storing the data and meta-information. The
non-zero values are stored in an values arrays and the corresponding index infor-
mation are stored in the columnStart array. The slices are organized very similar to
the rows in CSR. An offset array, called sliceStart, is used for storing the start po-
sition of every slice in the values and columnStart array. In difference to CSR two
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Figure 5.4: Simplified data structures of the HCSS format.
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different offsets for these arrays are required, as the data in the columnStart arrays
is partially bit-compressed, which results into different offsets. This is additionally
illustrated in Figure 5.5. The rowStart of the original CSR format is also used by
the format, but it is only required for the modified CSR slices. As the sliceStart
array can only be used for storing the overall number of elements in the slice, the
exact number of elements is required for the modified CSR slices. The last arrays
is called blockStart (not shown in the figures), and is used for improving the load
balance of the format (Requirement R6). Since the number of non-zero elements
in each slice differs, a static work distribution based on the number of slices is not
very effective. The blockStart array stores the first and last slice each thread has
to process. This allows the use of a more efficient distribution, for example based
on the number of overall processed non-zero elements.

Additionally the type of every slice has to be stored as additional meta informa-
tion. Instead of using an additional array, a small number of bits in the sliceStart
array is used. This is possible, because the processing is done on a slice level and
each slice contains a number on non-zero elements which is a multiple of the vector
size. This can be used to reduce all offsets by the factor of the vector size (e.g.,
factor 4 for a 4 element wide vector unit). By reducing the maximum possible
index by the factor 4, the highest 2 bits can be used for storing other information,
without limiting the size of the possibly usable matrices. As two integers are stored
for each slice this already overall results in 4 bits per slice in the case of a 4 element
wide vector unit. These 4 bit are more than enough to encode the three currently
used slice types. The used technique reduces the memory demand significantly,
compared to using an additional array (Requirement R1).

If the number of rows in the matrix is not a multiple of the vector size, the
remaining rows are stored in the normal CSR format. This part of the matrix is
called tail partition and is handled separately in the calculation of the SpMV.

Discussion

The basic idea of combining the ELL format with CSR has been used earlier in
other formats. Matam et al. [54] published the HYB format, which also uses both of
the formats. The major difference between HCSS and HYB is that HCSS stores the
CSR data in the same data structures, while the HYB format divides the matrix
into two separate matrices. This reduces the required meta data for the HCSS
format. Additionally HCSS is sliced and uses a modified CSR, which improves
memory alignment. The HYB format also does not use any index compression
techniques.

The design of the HCSS format does respect most of the identified requirements
and constraints. It Especially allows the efficient use of the vector units, proper
memory alignment and consecutive memory accesses (Requirements R5, R4 and
Constraint C4). It also supports a basic load balancing, even though it is not
independent of the matrix structure as for the CSR5BC format (Requirement R6).
The simple and small meta information as well as the used bit compression reduces
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the overall memory consumption of the format (Requirement R1).
The sliced layout of the format prevents interleaved and concurrent write oper-

ations on the ~y vector (Constraints C1 and C3). As each slice is independent from
the other slices, a NUMA-aware implementation is no problem (Constraint C2).
Furthermore, this in theory allows the asynchronous computation of the SpMV
(Constraint C8). The simple layout of the format reduces the branching to a min-
imum (Constraint C5).

The creation of the format does not require any time consuming operations like
reordering or pattern detection. Because of the required padding and the used
index compression the format requires two iterations over the input data. In a first
step the size of the required data structures has to be determined, while in a second
step the actual conversion can be done. This still should be considerably efficient
(Constraint C6).

The complexity of searching and updating an element in the HCSS format is very
similar to CSR, as both formats provide row based accesses (Constraint C7). The
location of non-zero elements in the HCSS formats can not be calculated easily,
because of the introduced padding. This means the location in the CSR format
can not be used to update an element in the HCSS format (see Section 3.3).

The HCSS format does require some simple heuristics to decide which slices
should be stored in which format, which could be described as tuning parame-
ters. The next chapter will describe heuristics to allow a simple format usage
(Constraint C9).

One drawback of the format is, that the slice size of the format has to be equal
to the vector size. This is very similar to the CSR5BC format and has the same
disadvantage. When transferring a matrix to another hardware platform, it may
be necessary to convert the matrix to the different vector size.

Overall the HCSS format, as CSR5BC, fulfills most of the identified requirements
and constraints. But, the overall structure of the format is much simpler and re-
quires much less meta information. This allows the use of a much simpler SpMV
implementation, which may have positive effects on the performance. One draw-
back of the format is the used compression technique. The simpler compression is
expected to achieve only smaller memory savings compared to CSR5BC. On the
other hand, the compression does not require a sophisticated decompression.

In theory, the HCSS format is applicable for all three relevant hardware plat-
forms, because all three use vector units or can be described as vector processors.
Practically, the amount of padding can increase significantly, if the vector size gets
much bigger. This is the case for GPUs, which work at 32 elements at a time. For
this reason the work will concentrate on the use of the format on CPUs and the
Xeon Phi platform.

The HCSS format does not directly utilize specific matrix structures, but may
benefit from evenly distributed non-zero structures. Without much variation of the
number of non-zero elements per row, a larger fraction of the slices can be stored
as ELL, which may improve the performance. In contrast, a very unregularly
distribution of the non-zeros can result in most elements being stored in the CSR
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format. Therefore, the format should deliver a very consistent performance for
most general matrices. Performance drops are expected for matrices with very
unregularly non-zero distributions.

The memory consumption of the format can be estimated using the following
equation:

mHCSS ≈ (nnz + fillin)× Sfloat //values

+ (nnz + fillin)× Sint × fcomp //columnIndex

+ 2× nSlices× Sint //sliceStart

The calculation of the size for the values and columnIndex array is very similar to
CSR and CSR5BC. In addition to the compression factor, fcomp, the addition fill-in
elements have to be considered. For each slice, two additional integers are stored
in the sliceStart array, which is very similar to the rowStart of the CSR format.
This fill-in can also be defined as an additional factor, which increases the number
of non-zero elements. The number of slices nSlices can be calculated by dividing
the number of rows by the vector size. This allows a more compact definition of
the equation:

mHCSS ≈ nnz × fpadding × (Sfloat + Sint × fcomp) +
nRows

vectorsize
× 2Sint

The average compression factor of the format has been calculated to be about
0.73 for the used set of matrices. Additionally, the average padding was measured
to be about 3.4%, which results in the padding factor to be about 1.034. Using
these and the previous assumptions, can be used to calculate the average memory
consumption per non-zero element:

m nnzHCSS ≈ nnz × 90.6

As for the CSR5BC format, the estimated memory consumption is compared in
the last section of this chapter.

5.3 Development of Local Group Compressed Sparse
Row – LGCSR

The optimization goal of the LGCSR format is on reducing the memory demand of
the matrix with advanced index compression and blocking techniques to directly ad-
dress the primary performance boundary of the SpMV operation (Requirement R1).
In the development process of the CSR5BC and HCSS format, techniques for the
memory reduction have been applied in a late stage. Because other optimizations
have been the focus of the development, the memory savings are expected to be
relatively small. For the LGCSR format less tradeoffs have been made, to reduce
the memory demand as effective as possible.
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Multiple techniques have been identified in the previous chapter for reducing
the memory demand of a format. In the LGCSR format two of them should be
combined, to reach a high compression factor. The basic idea of the format is to
utilize a common matrix structural property for the blocking. Analysis of a large
set of matrices (see Section 7.1) showed, that for most non-zero elements there are
also elements in neighboring columns of the same row. One example where this
property may derive from is the discretization of differential equations. When using
finite difference methods, so called stencils occur in the generated matrix. These
stencils often have a star-like structure, relating one central mesh element with its
neighbors [77, p. 45 ff.]. These star-like structures result in groups of neighboring
non-zero elements in a matrix. From these groups one dimensional row blocks can
be created. These blocks should be of dynamic length, to prevent the requirement
for additional fill-in. For each block the column index and the number of elements
have to be stored. These index information should be highly bit compressed, to
further reduce the memory consumption.

As no fill-in is required, the number of non-zero values should stay constant,
compared to the CSR format. This allows an implementation of the LGCSR for-
mat that reuses parts of the CSR data structures, which potentially reduces the
conversion time of the format (Constraint C6). Additionally this can also lead
to very efficient update operations in applications designed for the CSR format
(Constraint C7, see Section 3.3).

Since one-dimensional row blocks are used, it is reasonable to use a row based
SpMV operation. This further allows a row based load balancing without negative
effect on the compression. The matrix should be split into multiple partitions
based on the number of non-zero elements, which is expected to deliver a proper
load balance (Requirement R6). The partitioning further allows a NUMA-aware
implementation (Constraint C2). It also prevents interleaved and synchronized
writes on the ~y vector (Constraints C1 and C3).

Description of LGCSR Format

Figure 5.6 illustrates the concept of storing one dimensional blocks, or later called
local groups, using so called packages. The index information of one group is
compressed into a single package, which consists of a header and a variable length
payload. The packages encode the starting index of the group as delta to the
previous group and the number of non-zero elements in the group. For reaching
even higher compression, the number of bits for storing these information can be
fitted to the required number of bits to some degree. Both fields can have 4 different
sizes, which can be encoded with 2 bit per field in the package header. For the
column index 4, 8, 16 or 32 bit can be used, while the number of elements in the
group can be encoded using 4, 8, 16 or 27 bit. The 27 bit limit ensures, that the
full package consisting of 5 bit header, up to 32 bit index and the 27 bit group size
information does not exceed 64 bit.

The 5 bit header consist of 1 bit type information, 2 bit column index size
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Figure 5.7: Simplified data structures of the LGCSR format.

information and 2 bit group size information. The package type is used to encode
single non-zero elements in the matrix. In this case the group size information
in the package is not present, which further reduces the memory demand of the
format.

The overall data layout of the LGCSR format is presented in Figure 5.7. As
described the format reuses the values and rowStart array of the CSR format. The
packages, containing the column index information, are stored in the columnIndex
array. As for most compressed formats the reduced size of the columnIndex array
requires an additional offset array that points to the beginning of the arrays for
every row. This array is called columnStart. The LGCSR format uses the same
technique for improving the load balance (Requirement R6) as the HCSS format.
Therefore, it also uses an additional blockStart array which manages the rows
calculated by each thread (not shown in the figures).

55



5 Development of New Matrix Formats

Discussion

The basic concept of creating dynamic one dimensional blocks is also used in the
VBL format [71]. The main difference between VBL and LGCSR is a completely
different approach for storing the blocks.

Even though less tradeoffs have been made in the development process of the
LGCSR format, many requirements and constraints are fulfilled. The format clearly
reduces the memory consumption by using blocking and bit compression techniques
(Requirement R1). The developed data structures also allows consecutive memory
accesses and the load balancing is expected to be improved by the used partitioning
(Requirements R4 and R6).

The partitioning of the format prevents interleaved and synchronized mem-
ory accesses to the ~y vector and allows a NUMA-aware implementation (Con-
straints C1, C2 and C3). As each row of the matrix is independent of the others, it
is also in theory possible to calculate the format asynchronously on an accelerator
(Constraint C8). The reuse of the values and rowStart arrays allows an efficient
conversion, as well as efficient updates (Constraints C6 and C7). The LGCSR
format does not require any additional parameters (Constraint C9).

Even though many of the requirements and constraints are fulfilled, the format
has multiple possible drawbacks. The variable length of the blocks makes the
efficient utilization of the vector units very difficult (Requirement R5). The format
furthermore does not provide proper memory alignment, which further reduces
the efficiency of the vector units (Constraint C4). The use of one, instead of two
dimensional row blocks has the additional disadvantage, that the cache reuse for
elements of the ~x vector is not improved (Requirement R2). This can only be
reached by two dimensional blocking or one dimensional column blocks, where the
elements of the ~x vector are reused.

Since the format utilizes a specific matrix property to reduce the memory demand
of the matrix, the compression factor may vary depending on the matrix structure.
Even though the utilized property seems to be very common, there are matrices that
do not have any neighboring non-zero elements. This means the format depends
stronger on the matrix structure than the other developed formats. The complexity
of the compression, and the different possible package types may also introduce
issues according to additional branching (Constraint C5).

As described, the LGCSR format only allows a partial vectorization. This makes
the format unsuitable for the use on GPUs, which fundamentally rely on the SIMD
principle. It is therefore only implemented for the CPU and the Xeon Phi.

The LGCSR is expected to depend much stronger on the matrix structure than
the CSR5BC and HCSS format. It should perform best for matrices with large
row blocks. The performance is expected to drop, if no or only a small number
of row blocks exist, but should still be acceptable. In difference to other blocked
formats the overhead for storing the blocks is much lower, and the performance
drop is therefore expected to be smaller.

The memory consumption of the LGCSR format can be estimated using the
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following equation:

mLGCSR ≈ nnz × Sfloat //values

+ nnz × Sint × fcomp //columnIndex

+ nRows× Sint //rowStart

+ nRows× Sint //columnStart

The memory consumption of the values and columnIndex array is identic to the
CSR5BC format. Additionally the format requires two additional offset arrays that
have the same memory consumption like the rowStart array of the CSR format.
The equation can also be written more compact:

mLGCSR ≈ nnz × (Sfloat + Sint × fcomp) + 2× nRows× Sint
The average compression factor of the format has been measured to be about 0.12.
Using this and the previously made assumptions, the average memory consumption
per non-zero element can be estimated:

m nnzLGCSR ≈ nnz × 68.8

The memory consumption is compared with the other formats in the last section
of this chapter.

5.4 Optimization of the DynB Format

The in the previous sections presented formats have been completely new or have
introduced significant extensions to exiting formats. The development presented
in this section is based on the existing DynB format [72]. However no significant
changes to structure of the format will be done. In fact, the focus of the develop-
ment is on the optimization of the execution of the SpMV operation itself using an
autotuning approach. In general the autotuning approach could be applied to other
formats as well, but it at least requires a blocking with reasonable sized blocks.
The three newly developed formats are not suitable to be used with this approach.
Even though the LGCSR format stores one dimensional blocks, the blocks are ex-
pected to be to small. The DynB format has a blocked structure and shows good
SpMV performance. Therefore the DynB format has been selected to be optimized
using the developed autotuning approach.

Before this optimization is motivated, the existing DynB format will be explained
in detail. The structure of this section is different compared to the previous. The
motivation for the format is kept much shorter, as the format has not been de-
veloped in this work. This will be followed by the detailed explanation of the
DynB format. Afterwards the, in this work developed, optimization is explained
in detail. Finally, a discussion will show which of the, in this work identified, re-
quirements and constraints have been fulfilled. Furthermore, the possible benefits
and problems of the introduced optimization are discussed.
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The DynB format [72] is a format utilizing blocked structures within matrices.
In comparison to the BCSR format [5], it can store rectangular blocks of variable
size. In theory, variable block sizes allow a more general use of blocked formats,
because the matrix can consist of a wider verity of blocked structures. By dynam-
ically selecting the size of the blocks, less fill-in is required, compared to fixed size
approaches. This approach is very similar to formats based on pattern detection
(see Section 4.1). The major difference is that the DynB format stores rectangular
blocks only.

Even though the storage of blocked structures requires additional meta informa-
tion it is overall expected to reduce the memory consumption compared to typical
formats like CSR (Requirement R1). Furthermore, the DynB format stores two
dimensional blocks, which should improve the cache reuse for accesses on the ~x
vector (Requirement R2). Another beneficial effect of the blocked structure is the
efficient utilization of vector units (Requirement R5), but this may depend on the
used block sizes.

For the efficient parallel execution, the DynB format utilizes a similar distribu-
tion approach as the HCSS and LGCSR format. In a first step, the matrix is split
into partitions, each containing a similar number of non-zero elements. The block
detection is performed on each partition independently, which prevents blocks of
one partition to overlap with another. This approach has the benefit, that no
synchronization between the different threads is required, as each thread writes
only to its own rows (Constraint C3). The partitioning improves the load bal-
ancing and prevents interleaved writes to the result vector (Requirement R6 and
Constraint C1). It also allows a NUMA-aware implementation (Constraint C2).

Description of the DynB Format

As already described, the DynB stores rectangular blocks of variable size. In the
matrix creation process, the blocks of matrix have to be identified. This can be
done using different approaches, but for this work only one, greedy, approach is
of interest. First a threshold has to be defined, that describes the minimum non-
zero density of the blocks, i.e., the number of non-zero elements in relation to the
number of elements in the blocks (including fill-in). The greedy algorithm tries to
increase the size of the block in the horizontal and vertical direction in every step.
This is repeated as long as the density is above the set threshold. The size of the
block is only increased, if additional non-zero elements where found. Additionally
the maximum size of the blocks is limited to 64 elements.

Figure 5.8 presents the data structure of the DynB format, which is used for
storing the identified blocks. The non-zero values of the blocks are stored in the
values array in row-major order. The beginning of every block is stored in the
block start array, which allows to simply iterate over the blocks. Once for each
block the row and the column index is stored in the row index and column index
arrays.

As the size of the blocks is variable, the number of rows and columns has also to
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Figure 5.8: Data structure of the DynB format with a threshold of 0.75 [72].
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Figure 5.9: Simplified process of the DynB autotuning.

be stored for every block. This is done in the block row and block column arrays.
Because the maximum size of a block in one dimension is 64, a smaller data type
can be used for storing these information.

In the parallel implementation, each thread stores his partition of the matrix as
DynB matrix. The partitioning is therefore done before the block finding step.

Explanation of the Autotuning Approach

The DynB format supports 280 different block sizes. It is possible to calculate the
SpMV using one general kernel that iterates over both dimensions of the blocks.
This very simple implementation is not expected to deliver the optimal perfor-
mance, as it contains two additional loops with unknown iteration counts, which
can not easily be optimized by a compiler. It is expected that the optimal imple-
mentation for each block size is at least slightly different. E.g., the use of vector
units may be beneficial for larger, but not for small blocks.

The basic idea of the autotuning approach is to identify the optimal implemen-
tation for each block size individually using a large set of possible implementations
and synthetic benchmark matrices. The simplified process of the autotuning is pre-
sented in Figure 5.9. In a first step, the possible SpMV kernels and the benchmark
matrices have to be generated. A large set of matrices is thereby created, with each
matrix containing only one specific block size. Afterwards the SpMV is executed
using the kernels and the benchmark matrices, while the execution time is mea-
sured. The gathered information can be used to identify the fastest implementation
for each specific block size. These implementations are than used to generate an
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optimized executable, which is used to execute the actual SpMV operation. The
complete autotuning is required only once for the specific hardware platform and
can be executed offline. This means while the SpMV itself is executed, there is no
overhead for the autotuning. In the following, the different steps are explained in
more detail.

The kernel generation in the first step generates the required source code for all
possible block sizes. Many kernels can be generated automatically, as they follow
a fixed pattern. Additionally there are kernels, for example implementations using
intrinsics that can not easily be generated. The following list shows the set of
kernels used for most block sizes:

• normal: The default kernel, normally used in the general case. Consists of
two loops with variable loop count.

• loop: Very similar implementation as the normal kernel. Instead of variable
loop counts, the known block sizes are used as static loop counts.

• singleLoop: Special kernel for one dimensional blocks only. Implementation
is identic with the loop kernel, but only using one of the loops. The other
loop is not required, as its iteration count would be 1.

• unroll: Identic loop implementation as the loop kernel. Additionally the
pragma unroll directive is used to generated unrolled code.

• novec: Identic loop implementation as the loop kernel. Additionally the
pragma novec directive is used to prevent a vectorization of the code.

• simd: Identic loop implementation as the loop kernel. Additionally the
pragma simd directive is used to enable vectorization of the code.

• plain: The kernel is implemented without any loops. All operations are
manually unrolled.

• intrinsic: Similar to the plain kernel, the kernel is implemented without
loops. The calculation is implemented using low-level intrinsic functions.
The kernels have to be written manually.

In the basic DynB format the elements of every block are stored in row-major order.
For the autotuning every kernel is additionally generated for a column-major order
organization of the blocks. The creation of the format has been changed as well to
allow both block types. This may allow a more efficient vector unit utilization (see
aspects discussed for the HCSS format in Section 5.2).

The matrix generation is also done in the first step. For each block size a set
of synthetic benchmark matrices is generated. The matrices thereby contain one
specific block size only. Furthermore, for each block size three different distributions
of the elements and two different non-zero densities are created. This is done to
analyze, if the matrix structure has an impact on the individual kernel performance.
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Figure 5.10: Illustration of the three different structures used for the synthetic ma-
trices of the DynB autotuning. Every red square represents a block in
the DynB format.

Figure 5.10 presents the three used distributions. In every distribution the blocks
are placed with a safety margin around them, to prevent the greedy block finding
algorithm of the DynB format to combine multiple blocks into one bigger block.
The first structure is called round robin and it distributes the elements evenly over
the columns of the matrix. Starting in the first row and column, the blocks are
placed in increasing columns. When the end of the matrix is reached, the column
index is reset. This creates a pattern that reminds of squashed diagonals. The
second structure is a simple diagonal pattern, because of the safety margin there
is not an element in every row. The last structure selects the column index of
the blocks randomly. The number of entries per row is still fixed, also the safety
margin is still be respected.

The second step of benchmark execution uses the generated kernels and matrices
and measures the SpMV execution time. This should be done with a single thread
only, to avoid possible load imbalance problems. Furthermore, for each kernel
multiple versions should be used, using different compilers, optimization levels and
inlining of code.

In the third step the fastest kernel for each individual block size has to be iden-
tified. This can simply be achieved by comparing the measured runtimes of all
kernels for one specific block size. Further complexity is introduced by the dif-
ferent matrix structures used, which may require a comparison over a larger data
set. This is further discussed, if differences between the different structures can be
found.

The last step of the offline autotuning is the creation of an optimized executable
for the SpMV execution. The kernels identified in the previous step are combined
into one large SpMV kernel, to provide a proper implementation for every possible
kernel. Further analysis may be required to identify if it is suitable to provide a
implementation for every of the 280 possible kernels. For each block in a matrix,
the proper kernel has to be selected at runtime. The selection of the kernel has
therefore to be very efficient, to prevent excessive branching. This will be described
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in more detail in the following chapter, where the implementation is described.

Discussion

The discussion of the DynB format is split into two parts. The first part discusses
the format itself, while the second part presents advantages, disadvantages and
possible problems of the autotuning approach.

The DynB format fulfills most of the requirements, but only about half of the
identified constraints. The format reduces the memory consumption by using a
blocking approach (Requirement R1). It is furthermore the only approach that
uses a two dimensional blocking, which can improve the cache reuse of the ele-
ments loaded from the ~x vector (Requirement R2). The data layout also allows
consecutive memory accesses (Requirement R4). Depending on the identified block
sizes, the block structure allows a proper vectorization (Requirement R5). Very
similar to the HCSS and LGCSR format, the matrix is partitioned based on the
number of non-zero elements, which provides a basic load balancing (Require-
ment R6). The partitioning further prevents interleaved and synchronized writes
to the ~x vector and allows a NUMA-aware implementation (Constraints C1, C2
and C3). The blocks of the DynB format are independent from each other, which
in theory allows a asynchronous computation of the format (Constraint C8). The
simple data structures allow a implementation of the SpMV operation without a
lot of branching (Constraint C5). If multiple kernels are used to calculate blocks
of different size, branching could be a problem.

The detection of blocks in a matrix is a very time consuming process (Con-
straint C6). The time is reduced by using a greedy algorithm, but the conversion
time is still expected to be much higher compared the three other developed for-
mats. Furthermore, the DynB does not allow the identification of elements in a
specific row or column of the matrix. This has negative effects on the efficiency
of matrix element updates (Constraint C7). The varying block sizes of the for-
mat have a negative effect on the memory alignment (Constraint C4), new blocks
do not start at specific memory boundaries. The DynB format uses a threshold
parameter, which has to be defined (Constraint C9).

The DynB format is obviously designed for matrices with a blocked structure. It
is therefore expected to also perform best for this type of matrices. In comparison
to formats with a fixed block size, like BCSR, it is assumed, that DynB is suitable
for a wider range of blocked structures. The use of variable block sizes additionally
simplifies the usage of the matrix format, as no assumption about the actual block
size has to be done before the conversion. The necessity to define the threshold
parameter on the other hand makes the conversion more complicated.

The developed autotuning approach for the DynB format has similarities to the
pOSKI framework [12]. This framework is used for finding the optimal blocking
for a given input matrix and used hardware platform. The autotuning approach
developed in this work focuses on the identification of optimal implementations for
all possible block sizes.
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The developed autotuning potentially can increase the performance of the DynB
format. The default implementation does handle most of the block sizes identically.
For small blocks the loop overhead of the general implementation might be to high,
while for larger blocks the use of vector units may be beneficial. One possible
problem with the use of individual kernels is the introduced branching. For every
block the correct kernel has to be identified and executed, which can potentially
slow down the SpMV. Furthermore, the amount of program code could result
in problems with the instruction caches. If a large number of different kernel
implementations is used, the required code could not fit in the available caches.

Another problem may occur because of the developed autotuning process itself.
The initial assumption of the autotuning is, that the performance result of the
individual kernels and synthetic matrices can be used to determine the proper
kernel for a real matrix. It is also assumed, that the performance numbers of
the sequential execution can be used, to find the optimal kernels for the parallel
executions. It is possible that these assumptions do not hold true, which would
result in wrong findings.

The memory consumption of the DynB format can be estimated using the fol-
lowing equation:

mDynB ≈ (nnz + fillin)× Sfloat //values

+ nBlocks× Sint //blockStart

+ nBlocks× 2× Sint //columnIndex, rowIndex

+ nBlocks× 2× Schar //blockRows, blockColumns

Very similar to the HCSS format, the values array contains additional fill-in. For
each block additional meta information is required: The offset in the values array,
the column and row index and the block dimensions. The variable Schar denotes
a smaller index type that is used for storing the block dimensions. The number
of blocks can be estimated by dividing the number of non-zero elements by the
average blocksize. The equation can also be written more compact:

mDynB ≈ nnz × (fpadding × Sfloat +
3Sint + 2Schar
blocksize

)

The average padding for the DynB format has been determined to be about 3.1%.
Therefore, fpadding is assumed to be 1.031. Because of the maximum block sizes of
the DynB format, Schar is assumed to be 8 bit. The memory consumption of the
format strongly depends on the average block size. This parameter varies strongly
for the different matrices which makes the general estimation very difficult. By
analyzing the matrix set, the average block size is assumed to be 4. Using these
assumptions the average memory consumption per non-zero element is as following:

m nnzDynB ≈ nnz × 94
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5 Development of New Matrix Formats

Requirement / Constraint CSR5BC HCSS LGCSR DynB

R1 (reduce memory demand) X X X X
R2 (improve cache usage) X
R3 (improve access latency)
R4 (consecutive memory access) X X X X
R5 (vector unit utilization) X X X
R6 (load balancing) X X X X
C1 (no interleaved writes) X X X X
C2 (NUMA-awareness) X X X X
C3 (no synchronized writes) X X X X
C4 (proper memory alignment) X X
C5 (prevent branching) X v
C6 (efficient format creation) X X X
C7 (efficient matrix update) X X X
C8 (asynchronous computation) X X X X
C9 (no tuning parameters) X X X

Table 5.1: Overview over the by the formats fulfilled requirements and constraints.

5.5 Summary and Discussion

In the previous sections three new formats have been developed and the existing
DynB format has been optimized. Different optimization goals have been in the fo-
cus of each of the formats. Furthermore the development resulted in rather different
data structures. Table 5.1 summarizes the fulfilled requirements and constraints
of the newly developed formats and DynB. It can be seen, that all formats ful-
fill a large, but different fraction of the requirements and constraints. The HCSS
format fulfills the most requirements and constraints of the presented formats,
while the DynB format fulfills the least. The bare number of fulfilled requirements
and constraints is not expected to allow any assumption about the performance
of the SpMV operation. The requirements have different impact on the SpMV
performance, some of them also have no impact at all (e.g., the format creation or
element updates).

It can be seen, that no format was able to reduce the access latency on the ~x
vector (Requirement R3). The reason for this is, that no general usable optimiza-
tion technique could be identified, which could solve this problem. Furthermore
the DynB format is the only format that improves the cache reuse of the elements
from the ~x vector. For the CSR5BC, HCSS and LGCSR only vertical partitioning
or reordering approaches would have been suitable to fulfill this requirement. No
reordering has been used, as it significantly increases the complexity of the matrix
creation process. A vertical partitioning of a the matrix introduces other issues, like
potential synchronization. It is therefore not assumed to deliver a overall positive
effect on the SpMV performance.
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5.5 Summary and Discussion

Matrix
Memory Estimation Equation

Bit per
Format non-zero

CSR5BC
nnz × (Sfloat + Sint × fcomp + Sint

ω×σ 77.3
×[3 + d(log2(σ) + 2 log2(ω) + σ)/Sinte × ω + d(6× σ)/Sinte])

HCSS nnz × fpadding × (Sfloat + Sint × fcomp) + nRows
vectorsize

× 2Sint 90.6

LGCSR nnz × (Sfloat + Sint × fcomp) + 2× nRows× Sint 68.8

DynB nnz × (fpadding × Sfloat + 3Sint+2Schar
blocksize

) 94.0

CSR nnz × (Sfloat + Sint) + nRows× Sint 97.0

Table 5.2: Comparison of the memory consumption of the different Formats.

For all formats an estimation of the memory consumption has been done. It is
important to mention, that the estimations represent the average case for the in this
work used set of matrices. Table 5.2 presents the equations required for estimating
the memory consumption of the formats. Additionally it shows the average number
of bits required for every non-zero element, using the assumptions presented in the
previous sections. For the CSR format the equation from Section 2.1.2 and the
assumptions done in this chapter have been used for the estimation. It can be seen
that the memory consumption of all presented formats is estimated to be lower
than the memory consumption of the CSR format. The LGCSR format thereby
has the lowest estimated memory consumption, which matches the optimization
goal of the format. The HCSS format has the highest memory consumption of the
developed formats. In the evaluation in Chapter 7 the memory consumption for
the matrices is analyzed empirically. This will show the accuracy of the calculated
estimations.
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6 Implementation

In this chapter implementation specific details are described. The focus thereby is
on the conversion operations of the formats and performance critical details of the
SpMV implementation. Only relevant parts of the code are shown, the full source
code can be found on the CD attached to this work.

All described implementations have been done inside an existing software en-
vironment. The software already offers the basic functionality for managing the
vectors, reading in matrix and vector data and checking the correctness of an ex-
ecuted calculation. Using the existing interfaces it is only necessary to provide
the proper conversion methods from the CSR format into the new format and the
SpMV implementation. In some cases additional minor data handling functions
are required, which are used to copy the matrix data to another device, like the
Xeon Phi or a GPU. The focus in the following sections is on details of the con-
version method and the SpMV operation of the formats only. Additionally the
implementation of the autotuning approach is explained in detail.

In the following, the implementation of the three formats CSR5BC, HCSS and
LGCSR is described in separate sections. The last section describes the implemen-
tation details of the developed autotuning approach.

6.1 Implementation Details of the CSR5BC Format

The CSR5BC format is based on the CSR5 format developed by Liu et al. [51].
A reference implementation for the CSR5 format is provided as open-source by
the author for all three platforms relevant in this work. The CPU and Xeon Phi
implementation is done using OpenMP [68] and AVX2 [31] intrinsics. The GPU
implementation is done with Compute Unified Device Architecture (CUDA) [64].
These implementations are used as basis for the development of the CSR5BC for-
mat.

The first step is to modify the creation process of the format. As the CSR5
and CSR5BC format share the most data structures, most parts of the CSR5 im-
plementation can be reused. Two additional steps are required at the end of the
CSR5 creation process. The first step creates the compressed column index struc-
tures in the existing CSR5 columnIndex array. It furthermore creates the required
block meta information in the compressionPointer array. By using the existing
columnIndex array, the compression of the column data can be done directly, even
though the final, compressed size is unknown. After this step the reduced space
required for storing the compressed column information is known. In the second
step the compressed column information are copied into a new, tightly packed,
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6 Implementation

1 i f ( l a n e i d < c o m p r e s s i o n p o i n t e r s i z e )
2 l o c a l V a l = compre s s i on po in te r [ l a n e i d ] ;
3
4 g l o b a l O f f s e t = s h f l ( l oca lVa l , 0) ;
5
6 // each entry in the compress ion po in te r i s 6 b i t l ong
7 packetPos = 1+(6 ∗ l a n e i d ) /32 ;
8 b i t S t a r t = (6 ∗ l a n e i d ) %32;
9 numBits = 0 | ( s h f l ( l oca lVa l , packetPos ) << b i t S t a r t ) >> (32−6) ;

10 remainder = s h f l ( l oca lVa l , packetPos+1) >> (32−6+32−b i t S t a r t ) ;
11 i f (32− b i t S t a r t < 6)
12 numBits |= remainder ;
13 . . .
14 for ( int i = 0 ; i < sigma ; i++)
15 {
16 numBitsCurrent = s h f l ( numBits , i ) ;
17 . . .
18 }

Listing 6.1: Simplified reading of the compressionPointer array and unpacking of
meta information on CUDA using shuffle functions.

columnIndex array. The conversion in the reference implementation is done on the
specific device used, which means multiple implementations had to be modified.
Nevertheless most part of the code could be reused.

Beside the creation process obviously the SpMV operation itself had to be mod-
ified. One important part of the SpMV operation is reading the compression-
Pointer array, which is holding the compression related meta information of the
blocks. Listing 6.1 shows the relevant and simplified parts of the GPU kernel.
The compressionPointer values are read only once, by consecutive threads (line
2). Afterwards the relevant parts of the arrays are exchanged efficiently between
the different threads using shuffle functions. Each thread thereby determines the
number of bits required for one row of the block (lines 6–11). For every row of the
block, the currently used number of bits is exchanged between the threads, again
using the shuffle function (line 13–17). The shuffle intrinsics allow the efficient
exchange of data between multiple threads without using the shared memory of
the GPU [64].

The actual index decompression is shown in Listing 6.2. The decompression only
requires the use of some bit shifts, and if necessary the loading of a new element of
the columnIndex array. One important advantage of the used compression is, that
the loading of new array elements is always done concurrently using all available
threads (line 6). This is because all threads use always the same number of bits
for the compression in the same iteration. This has been an important point in the
development of the format. This leads to proper, consecutive memory accesses.

The rest of the SpMV operation is mostly reused from the reference imple-
mentation and is therefore not subject of further discussion. The presented code
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6.2 Implementation Details of the HCSS Format

1 numBitsCurrent = s h f l ( numBits , i ) ;
2
3 columnIndexTmp = 0 | ( ( columnIndexLocal << (32−numBitsLeft ) ) >> (32 −

numBitsCurrent ) ) ;
4 i f ( numBitsLeft < numBitsCurrent )
5 {
6 columnIndexLocal = columnIndex [ numPacketsLoaded∗OMEGA+l a n e i d ] ;
7 numPacketsLoaded++;
8 numBitsLeft = 32 − ( numBitsCurrent − numBitsLeft ) ;
9 columnIndexTmp |= ( columnIndexLocal >> numBitsLeft ) ;

10
11 } else
12 numBitsLeft −= numBitsCurrent ;
13
14 columnIndex += columnIndexTmp ;

Listing 6.2: Decompression of the actual column indexes in the innermost loop of
the SpMV.

Determine proper
work distribution

Determine slice
types and required
memory demand

Create sliceStart
array, determine
memory demand

Create final
data structures

Figure 6.1: The four phases required in the creation method of the HCSS format.

fragments have been taken from the CUDA version of the code. The code for the
CPU and Xeon Phi is very similar, but only one thread is used for processing each
block, which simplifies the process presented in Listing 6.1. The effective use of the
vector units is realized by using compiler intrinsics and manual unrolling. This is
not shown here as, especially the unrolling, leads to relatively long code fragments.

6.2 Implementation Details of the HCSS Format

The HCSS format is implemented for the CPU and Xeon Phi platform only. It
is realized using OpenMP, vectorization annotations and compiler hints. As the
implementation for the Xeon Phi platform is essentially the same as the CPU
implementation, the relevant parts are only discussed once.

The creation of the format is done in parallel, which reduces the creation time
significantly. Even though some time has been spent on implementing an efficient
conversion method from CSR to HCSS, it is assumed, that the method can be
further optimized. Obviously the focus of this work is the implementation of the
SpMV operation.

The creation process is divided into four phases, which are presented in Fig-
ure 6.1. In the following, these phases are explained in more detail. In the first
step the blockStart array is created, that specifies, which thread processes which
slices. The distribution is done based on the number of non-zero elements in the
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slices. The simple greedy algorithm tries to distribute the number of non-zero el-
ements evenly between the threads. Most of this functionality existed already in
the software framework, but on a row basis instead of slices. The code has been
adapted to distribute the work based on the slices used in the HCSS format. The
whole creation process of the matrix works based on this work distribution. This
ensures the correct allocation of memory, as each thread processes the rows it is
also supposed to process in the SpMV operation (Constraint C2).

In the second step, the existing rowStart data from the CSR format is copied to
ensure a proper NUMA-aware allocation. Additionally the matrix is traversed and
the type of every slice is determined. First it is decided, if the ELL format can
be used, or if the required amount of padding is to high. The decision is based on
basic structural data of the matrix slices: the number of non-zero elements in the
shortest and the longest row. Slices should only be stored as CSR if two conditions
are true: The number of non-zero elements exceed a specific threshold and the
ratio between the shortest and longest row exceed a given factor.

Empirically the two threshold have been defined to be 16 for the minimum num-
ber non-zero elements and the shortest row has to be at least 20% shorter than
the longest row. Other heuristic or thresholds may have a positive effect on the
performance of the format. The given heuristic is used to proof the general con-
cept of the format and simplifies the use of it (Constraint C9). If the use of ELL is
suitable, the compressed version is used, whenever the indexes can be compressed
in 16 bit and the rows have at least 3 entries. Part of the second step is the partial
creation of the sliceStart array, by writing the number of actually stored elements
in each slice and the type of the slices.

The third step is the calculation of two prefix sums over the sliceStart array for
creating the final data structure. As the slice types are also encoded in the first
bits of the integers, a modified prefix sum is used, which handles the first two bit
separately. The last elements of the sliceStart array can afterwards be used to
determine the memory demand of the columnStart and values arrays.

The fourth step is to copy the actual values and required padding to the new
values array. Additionally the compressed and uncompressed column indexes have
to be calculated and required padding has to be added to the columnIndex array.

As the data structures of the HCSS format are very simple by intention, the
implementation of the basic SpMV operation is straightforward. With the help of
the vectorization report [20] of the Intel compiler, the implementation has been
extended with additional compiler hints and vectorization directives. Listing 6.3
shows the central part of the compressed ELL SpMV kernel. The innermost loop
shows the actual SpMV calculation. Each iteration calculates the partial results
of two non-zero elements, whose index data has been compressed. The first step is
loading the next 32 bit index (line 4) and extracting the two 16 bit indexes using bit
shifting and masking (lines 5 and 6). The assume function is used, to ensure the
compiler the proper data alignment for the accesses on vValues. Many such hints
for the compiler are necessary (not shown here) to force the compiler to generate
aligned, more efficient, vector code. Finally the Intel vectorization report confirms,
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6.3 Implementation Details of the LGCSR Format

1 for ( i ndex t j = 0 ; j < width−1; j++){
2 #pragma simd a l i gned
3 for ( i ndex t i = 0 ; i < VECTOR SIZE; i++){
4 unsigned int index = columnIndex [ o f f s e t I n d e x +( j +1)∗VECTOR SIZE+i ] ;
5 i ndex t index1 = index & 0xFFFF;
6 i ndex t index2 = ( index & 0xFFFF0000) >> 16 ;
7
8 prevIndex [ i ] += index1 ;
9 assume ( prevIndex [ i ]%16==0) ;

10 sum [ i ] += va lues [ o f f s e t V a l u e s + . . . ] ∗ vValues [ prevIndex [ i ] ] ;
11
12 prevIndex [ i ] += index2 ;
13 assume ( prevIndex [ i ]%16==0) ;
14 sum [ i ] += va lues [ o f f s e t V a l u e s + . . . ] ∗ vValues [ prevIndex [ i ] ] ;
15 }
16 }

Listing 6.3: Excerpt of the compressed ELL kernel of the HCSS format.

that the inner loop is properly vectorized and that all memory accesses have been
properly aligned.

6.3 Implementation Details of the LGCSR Format

The LGCSR format is also implemented for the CPU and the Xeon Phi platform
only. The format has been realized using OpenMP parallelism and compiler intrin-
sics for additional vectorization.

The conversion process from the CSR to the LGCSR format is very similar to
the one of the HCSS format and process can be also be divided into the same four
steps. In the first step of the creation, the work distribution is determined. In
difference to the HCSS format this is done on a row base.

The second step is used to identify the local groups in the rows, which is necessary
for determining the final memory demand. In this phase the number of required in-
dex elements is stored in the columnIndexStart array. In the third phase, the prefix
sum over the columnIndexStart is calculated, to generate the needed offset array.
In comparison to the HCSS format a simple prefix sum operation can be used, as
no additional information is encoded in the leading bits of the array elements.

In the last step the space demand is known and the final data structures can
be allocated. The data is copied and the compressed data index information are
generated.

In the SpMV operation, the process of loading and decoding the index informa-
tion is a important aspect. Listing 6.4 shows the simplified code of the relevant
kernel part. It shows the loading of a 64 bit package, which includes the loading
of new elements from the columnIndex array if necessary (line 2–10). As the max-
imum package size is defined to be 64 bit, it is guaranteed, that the 64 bit contain
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1 // check i f new data has to be loaded
2 i f ( b i t s L e f t < 64) {
3 package = package current << (64− b i t s L e f t ) ;
4
5 p a ck a g e l a s t = package current ;
6 package current = columnIndexRow [ packageNumLoaded++];
7 package |= package current >> b i t s L e f t ;
8
9 b i t s L e f t += 64 ;

10 } else {
11 i f ( b i t s L e f t == 64) {
12 package = package current ;
13 } else {
14 package = pa c k a ge l a s t << (64−( b i t s L e f t −64) ) ;
15 package |= package current >> ( b i t s L e f t −64) ;
16 }
17 }

Listing 6.4: Simplified implementation of the package loading process of LGCSR.

the full package (potentially more). If the read package is smaller than the loaded
64 bit, the additional bits belong to the next package. Two buffers are used for
loading the data and preventing multiple reads of the same elements (line 10–17).

Listing 6.5 shows the actual SpMV operation for the LGCSR format. Compiler
intrinsics are used for vectorizing the code (line 4–6 and 12–16). The vectorization
is thereby only used, when at least 4 elements can be processed at once (the group
is at least 4 elements big). If this is not the case, a scalar operation is used (line 8).
Like all row-major order formats, the vectorization of the LGCSR format requires
an additional reduction at the end of every row (line 12–16).

6.4 Implementation Details of the DynB Autotuning

Most parts of the autotuning approach are implemented using Python scripts in
combination with the previously described software framework. Not the whole
autotuning process has been automated, as this would have been out of scope of
this work. The most time consuming steps, e.g., the kernel creation and benchmark
execution, have been automated.

As described in the previous section, most of the kernels can be generated auto-
matically. These kernels have one basic pattern, which can be adapted to different
block sizes. This is different for some more specialized kernels, which need be writ-
ten by hand. One example for this are implementations using intrinsics. The kernel
creation scripts takes the manually written kernels and the general templates to
create the source code for the kernels for every block size.

The benchmarking script uses the kernel source code to compile a special ver-
sion of the DynB SpMV operation. The SpMV operation is executed using the
synthetic matrices and the execution time is measured. The results are stored in a
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6.4 Implementation Details of the DynB Autotuning

1 for ( i ndex t j j = rowStart [ row ] ; j j < rowStart [ row +1] ; j j ++){
2 // . . . l oad ing and decoding o f packages
3 i f (numInGroup > 4) {
4 x256d = mm256 loadu pd(&vValues [ currentColumnIndex ] ) ;
5 value256d = mm256 loadu pd(& va lues [ j j ] ) ;
6 sum256d = mm256 fmadd pd ( value256d , x256d , sum256d ) ;
7 } else {
8 sum += va lues [ j j ] ∗ vValues [ currentColumnIndex ] ;
9 }

10 }
11 // reduce the vec t o r un i t va l u e s to a s i n g l e va lue
12 hiQuad = mm256 extractf128 pd ( sum256d , 1) ;
13 loQuad = mm256 castpd256 pd128 ( sum256d ) ;
14 hiDual = mm add pd ( hiQuad , loQuad ) ;
15 loDual = mm permute pd ( hiDual , 1) ;
16 sum128d = mm add sd ( hiDual , loDual ) ;
17
18 mm store l pd(&sumTmp, sum128d ) ;
19 uValues [ row ] = sum+sumTmp;

Listing 6.5: The actual SpMV operation of the LGCSR format.

large database. This step is repeated several times for every kernel using different
compilers and optimization options.

The selection of the fastest kernels is done manually and is described in more de-
tail in the evaluation. The creation of the optimized executable is a semi-automated
process. The in the previous step selected kernels have to be provided to a script,
which than creates the code for the SpMV operation.

A very important part of the implementation is the integration of the optimized
block kernels into the SpMV operation of the DynB format. As already discussed
in the previous chapter, 280 different block sizes and kernels are possible, which
potentially introduces a lot of additional branching. The use of simple conditions
is not suitable, as this would require the evaluation of many expressions for every
block calculation. Each time one block is calculated, a series of conditions would
have to be checked, until the correct block kernel is identified.

Instead of this another approach has been used. In theory switch case statements
can be executed much more efficient than a series of conditional statements. The
cases of a switch case statement have to be constant at compile time, which allows
for very efficient optimizations of the compiler. When the numerical values of
the cases are close to each other, the compiler can create a jump table instead of
conditional statements. The n-th row of the table thereby contains a jump directive
for the case with the constant value n.

This behavior has been verified for the Intel compiler, by analyzing the generated
assembler code. The analysis also showed, that the optimization can be applied
in the case that not only consecutive numerical values are used. In this case, the
missing values are filled with jump directives to the default case of the switch case
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statement.
Optimally it would be possible, to use only one large switch case statement, that

contains all 280 cases. This would require the transformation of the two dimensional
number space of the block sizes into one, consecutive, number space. Because the
possible block dimensions are limited by the number of elements in the block, only
specific combinations are possible. For example are up to 64 element long or high
blocks possible, but only if the other dimension is 1. The transformation is not
easily computable, and would introduce significant overhead.

Therefore a more suitable approach is to use nested switch case statements. The
first switch case statement is used to identify the correct number of rows, the switch
case on the second level identifies the actual kernel by finding the correct number of
columns. Using this, two jumps are required for finding the correct implementation
for the current block which is expected to be acceptable. The evaluation in the
next chapter has to show, if it suitable to provide kernels for all possible block sizes.
As already discussed, the amount of program code may have negative effects on
the SpMV performance, as the size of the instruction caches may be a bottleneck.
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7 Evaluation

In this chapter the previously developed formats are evaluated. In the first section,
the experimental setup and the methodology is described. Afterwards preliminary
investigations are done. Following, the performance of the developed formats is
evaluated on the three relevant hardware platforms. In the next section the memory
consumption and the conversion effort of the developed formats is evaluated. The
performance of the DynB autotuning is evaluated in the following section. The
chapter closes with a discussion and summary of the findings.

7.1 Experimental Setup and Evaluation Methodology

Evaluating the performance of a matrix format is a complex process [49]. The per-
formance can be influenced by many parameters, e.g, the used hardware platform,
the software configuration or format parameters. The work of Langr et al. [49]
describes important evaluation criteria for matrix formats, which will partly be
used in this work. This section will describe the experimental setup and the used
evaluation methodology.

Experimental Setup

A large set of 73 square matrices is used for all parts of the evaluation. The set
consists of matrices from the University of Florida Sparse Matrix Collection[15]
and the Comparative Solution Project[80]. All matrices vary in their size and
properties, to provide a broad spectrum of different matrix types. Table A.1 in the
Appendix presents the full set with a selection of properties. The used set contains
many matrices that are commonly used in other publications, which improves the
comparability.

Table 7.1 presents selected technical details of the three hardware systems used
in the evaluation. The presented CPU system consists of two processors, all per-
formance numbers consider the whole system and not the individual processor
performance. The Tesla K80 GPU consists of two separate GPUs on a single PCB,
in the benchmarks only one of the GPUs is used. Therefore, the individual perfor-
mance numbers of each core are listed in the table. Both GPUs of the Tesla K80
behave as individual devices, while the CPUs work as one large system. For this
reason both CPUs, but only one of the GPUs is used.

The used software environment can also have a significant impact on the per-
formance. All measurements for the CPU system have been taken using the Intel
compiler 2017 [33]. The only exception are the measurements of the CSR5 and
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Parameter
Intel Xeon Nvidia Intel Xeon
E5–2680 v3 Tesla K80 Phi 5110P

Clock [GHz] (with TurboBoost) 2.5 (3.3) 0.560 (0.875) 1.053
Degree of parallelism 482 2 × 24963 240
Main memory size [GB] 128 2 × 123 8
Theor. peak performance [GFlops] 960 2 × 9353 1010.8
Memory bandwidth [GB/s]1 114.2 199.3 132.6

1 Measured using the stream benchmark [55].
2 Including hyperthreading.
3 Only one GPU is used for the measurements.

Table 7.1: Technical details of the three used hardware platforms.

Compiler Version

Intel 2015 15.0.1
Intel 2016 16.0.2
Intel 2017 17.0.0
Nvidia 7.5.17
GNU 6.2.0

Table 7.2: Overview over the used compilers and versions.

CSR5BC format, which have been measured using the Intel compiler 2016. This
is necessary, because the CSR5 implementation is not compatible with the newest
version of the Intel compiler. The measurements on the Xeon Phi are taken using
the Intel compiler 2015, as the newer versions could not be used because of license
restrictions. The CUDA code is compiled using version 7.5 of the Nvidia CUDA
compiler [65]. For the measurements of the DynB autotuning the newest Intel
compiler 2017 and a recent version of the GNU compiler [19] are used. Table 7.2
shows the exact compiler versions used in the evaluation.

The primary performance factor is the measured runtime of the SpMV operation.
The time is measured by the used software framework. Runtime measurements can
be influenced by many different factors, e.g, background system processes. The
accuracy and consistency of the measurements is increased by executing the SpMV
100 times and using the median runtime as measure in the evaluation.

Evaluation Methodology

The evaluation is split into multiple sections. Before the actual evaluation, a pre-
liminary investigation is done in Section 7.2 to identify the, for the evaluation,
relevant matrix formats and to define important parameters. In the Sections 7.3–
7.5 the developed matrix formats are evaluated on the three hardware platforms.
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Each platform is discussed in a separate section allowing a direct comparison of the
developed formats. In Section 7.6, the memory consumption and the conversion
effort of the developed formats is evaluated. The performance of the DynB auto-
tuning is evaluated in Section 7.7. Finally in Section 7.8, the findings are discussed
and summarized.

The performance analysis of the developed formats on the different platforms is
primarily based on two specific performance comparisons. First, the performance of
the formats is compared to the performance of the CSR format. The comparison to
CSR is also suggested by Langr et al. [49], because it allows a better comparability
to other publications. This is because the CSR format is the most commonly
used matrix format and by calculating the speedup to CSR, the performance is
abstracted from the specific hardware.

In a second step, the performance of the developed formats is compared to a
set of relevant matrix formats (see Section 7.2). First the speedup is calculated
by identifying the fastest format for every matrix from the list of relevant formats.
Then the runtime of the developed format is compared with the previously iden-
tified runtimes. Depending on the findings of these two comparisons, additional
investigations may be done individually for every hardware platform.

It is important to mention, that all these performance comparisons are done
against other, highly optimized, matrix formats. This means that performance
improvements of a few percent are already very good. Since the SpMV operation
is often the most time consuming operation in applications, small performance
improvements can have a significant impact on the overall execution time. In
the second comparison against the best formats for every individual matrix, it is
important to know that the performance of most formats depend on the matrix
structure. Additionally some formats are specialized to achieve very high perfor-
mance for very specific matrix properties, e.g., for blocked matrices. Therefore, it
is very unlikely, or even impossible, that a single matrix format can outperform all
other formats for any given matrix. Furthermore it is even unlikely, that a single
format can reach a median speedup above 1, which would mean it is the fastest
format for at least 50% of the matrix set. The comparison to the fastest formats
allows to answer three important questions:

1. For how many matrices a speedup can be achieved? For these matrices the
new format outperformed all existing formats and its the new fastest format.

2. How much performance is lost in median? This is the median performance
loss if always the new format is used, instead the optimal format.

3. What is the highest performance loss? This shows the maximum performance
loss if always the new format is used, instead the optimal format.

Thereby, it is very unlikely that the best format for every matrix can be determined
at runtime. Thus all numbers present the worst-case.

In the following evaluation primarily boxplots are used for the presentation of
the results. Since multiple variations of boxplots exist, the used representation is
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Figure 7.1: Example for the boxplots used in this work.

explained in more detail. Figure 7.1 shows an example of the used boxplots. The
colored box thereby marks the area in which 50% of the data reside. Therefore,
the upper and lower bounds are the 25th and 75th percentiles. The line in the box
additionally marks the median.

The vertical lines on top and below the box are called whisker. The maximum
length of the whisker is defined as the 1.5 of the Interquartile Range (IQR). The
IQR is calculated by the difference between the 75th and 25th percentiles, which
matches the hight of the colored box. The whiskers reach to the lowest and highest
value still without the maximum length starting form the box. All values below or
above the whiskers are considered as outliers. They are shown as individual values
in the figure.

7.2 Preliminary Investigation

As previously described, the first step of the evaluation is the identification of the
relevant matrix formats for the performance comparisons in the following sections.
This is done by identifying the fastest formats for the different matrices on the
relevant platforms. The analysis is thereby made on a large dataset. The dataset
contains 13 different matrix formats on the CPU, 7 on the GPU and 5 formats
on the Xeon Phi. Furthermore, it also contains various different configurations for
every matrix format. This includes different degrees of parallelism, format specific
parameters and multiple different SpMV implementations.

From this dataset the matrix format with the fastest SpMV execution is identified
for each individual matrix. For some matrices and formats the runtimes are very
similar, consequently not a single format could clearly be determined as fastest.
This is additionally problematic because of possible measurement inaccuracies. For
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Format CPU

CSR 37
DynB 29
BCSR 14
CSR5 9
Others 3

Format GPU

ELL-BRO 34
ELL 28
CSR5 26
HYB 17
CSR 12
SELL-C-σ 2

Format Phi

CSR 57
CSR5 23

Table 7.3: Number of occurrences of the different formats in the list of fastest for-
mats on the relevant platforms.

these reasons all formats within 5% from the fastest runtime are assumed to be
equal and are thus all considered as fastest. The relevant matrices are determined
by counting the number of occurrences of the different formats over the full set
of matrices. The resulting ranking gives a general view on the relevance of the
different formats. Because of the 5% range, the list can contain more occurring
formats than the number of benchmark matrices.

Table 7.3 shows the number of occurrences of the different matrix formats in
the rankings. On the CPU overall only 4 formats are relevant. The CSR format
occurs most often, followed by the DynB format, the BCSR format and CSR5.
On the GPU system, the distribution is very different. Here are 5 relevant ma-
trix formats. Both ELL based formats ELLpack Bit Representation Optimization
(ELL-BRO) [85] and basic ELL occur most often, closely followed by the CSR5
format, the HYB format and CSR. The SELL-C-σ format occurs only twice, which
makes it irrelevant for the later comparisons. On the Xeon Phi, only 2 of the 5
measured formats are relevant. For most matrices the CSR format delivers the
best performance, followed by the CSR5 format.

For some of the formats, multiple versions of the SpMV operation exist, e.g.,
using intrinsics or simd compiler directives. This is only relevant for the CPU
implementation. By analyzing the occurring versions in the list of fastest matrix
formats, the used implementations have been selected. For the CSR5BC and the
LGCSR format most often the intrinsic implementation performed best and is
therefore used in the evaluation. For all other formats the default implementation
is used.

In the next step, proper parameters for the relevant formats have to be identified.
For all CPU and Phi implementations one important parameter is the number of
used threads. Based on the measurements of all different thread configurations,
the best number of threads has been identified for every format. This was done by
first identifying the runtime with the optimal number of threads for each individual
matrix. This runtime is then compared with the runtime using a fix number of
threads for all matrices. By comparing the average slowdown over all matrices
using the fixed numbers of threads, the best general setting has been identified.
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The analysis showed that the use of the full parallelism including hyper-threading
results in the best average performance for all formats and platforms. On the CPU
all 48 threads are used, which results in an average performance loss of 1–5%. On
the Xeon Phi, the average performance loss by using all 236 threads is 1–8%. Even
though, the fix selection may result in a performance loss, this is a very practical
approach, as in a real use-case the optimal number of threads is also unknown.

In addition to the thread mapping, the two formats DynB and BCSR require the
definition of further parameters. For the DynB format this is the threshold value,
which defines the maximal allowed fill-in in the blocks. The optimal value has been
identified in the original publication [21] to be 0.85 and is therefore also used in this
work. The performance of the BCSR format highly depends on the selected block
size, which again depends on the matrix structure. It is unlikely that the selection
of one fixed block size results in a practical relevant performance. Therefore, always
the best found block size is used for all mentioned runtimes of the BCSR format.

Determining the proper amount of parallelism for GPU based systems is much
more complicated. This problem has already been analyzed in an earlier publica-
tion [40]. The work presents heuristics for the proper thread selection, which are
used for the measurements in this work. The ELL-BRO format has one relevant
additional parameter, which has also been analyzed in [40]. The parameter defines
the size of the used slices and has been defined to be 128.

In the following sections, the performance of the newly developed formats is
evaluated. The evaluation process is thereby based on the, in this section defined,
parameters.

7.3 Performance Evaluation on the CPU

In this section, the performance of all newly developed formats is evaluated on the
CPU-system. In a first step, the performance of the different formats is compared
to the CSR format (see Figure 7.2a). It can be seen that HCSS is the only format,
that reaches a speedup in the median case. The CSR5BC format has the worst
performance and only for a small number of matrices a speedup can be reached at
all. The performance of the LGCSR format varies much more, compared to the
other two formats. For both the CSR5BC and LGCSR format the median speedup
is below 1, which means it is slower than CSR. In contrast to CSR5BC, the LGCSR
format can reach a speedup for a significant number of matrices.

The high variability of the LGCSR format can be explained by the layout of
the format. It utilizes block-like structures of the matrix to reduce the memory
consumption. A more detailed analysis showed a clear correlation between the
blocked structures and the reached speedups compared to CSR. A new simple
measure has been developed for evaluation the amount of blocking of matrices,
specific for LGCSR. The measure counts the number of elements that are part of
vertical line block (or local group), as they are used by LGCSR. Afterwards the
number of elements, that are part of a group is compared to the overall number
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(b) Speedup to the best format

Figure 7.2: Speedup of the developed formats compared to CSR and the best for-
mat for every matrix from the relevant matrix formats on the CPU.
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Figure 7.3: Structural dependency of the LGCSR format (left) and the load balance
of the CSR5BC, HCSS, LGCSR and CSR5 format (right) and the CPU.
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of non-zero elements. The result is the percentage of non-zero elements which are
part of a local group.

Figure 7.3a presents the new measure in relation to the speedup of LGCSR
compared to CSR. The additional line presents the smoothened mean of the present
data. It can be seen, that high speedups are only achieved when the majority of
elements are part of a group. On the other hand, a high amount of elements in
groups does not guarantee a speedup compared to CSR. Furthermore, there is no
clear relation between the amount of elements in groups and the reached speedup.
Nevertheless, the analysis clearly shows the structural dependency of the LGCSR
format.

The HCSS format shows a very consistent performance. The performance of the
format is less dependent on the matrix structure than LGCSR. But it can also be
seen that the maximum speedup and the 75th percentile is much lower compared
to LGCSR. Here, the LGCSR format can reach higher speedups by utilizing the
matrix structure. On the other hand, the maximum performance loss of the HCSS
significantly lower than for LGCSR.

The CSR5BC format is unsuitable for the use on CPU-based systems. Only for
a small number of matrices a speedup is reached and the median performance loss
is about 13%. Further analysis have been made, to explain this poor performance,
but no definite reason could be identified. The hardware performance counters
have been analyzed to identify issues related to excessive branching, but no issues
could be found. One possible reason for the poor performance of the CSR5BC
format could be the complexity of the SpMV calculation. It is the most complex
implementation and uses intrinsics, which allows less optimization by the compiler.

Another explanation for the poor performance would be an insufficient load
balance. The load balancing of the formats has been analyzed by measuring the
execution time of every individual thread. Afterwards, the maximum performance
improvement with optimal load balancing was calculated. Figure 7.3b presents
the result for the three newly developed formats and CSR5. It can be seen that
the median load balance of all formats is considerably good, with maximal median
improvements of 4–7%. But it can also be seen that the load balance of the CSR5BC
format is very similar to the load balance of the HCSS format. The load balance of
the LGCSR format varies much more as the other formats, which can be explained
by the structural dependency of the format.

Compared to the CSR5 format, CSR5BC has higher load imbalances. Since the
CSR5BC format only adds an additional index compression to the CSR5 format,
this optimization has to be the reason for the increased load imbalances. One
explanation for this is the variable compression technique, which reaches different
compression factors for different parts of the matrix. Therefore, the calculation of
some parts of the matrix require a higher memory bandwidth than other parts,
which can lead to load imbalances. Overall it could not be shown, that the opti-
mization goal of the CSR5BC is fulfilled on the CPU. The load balance could not
be improved in comparison to the other developed formats.

Figure 7.2b shows the speedup of the developed formats compared to the fastest
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Format
CPU

rank (diff)

HCSS 30
LGCSR 30
CSR 24 (-13)
DynB 15 (-14)
BCSR 12 (-2)
Others 5 (-7)

Table 7.4: Number of occurrences of the formats in the list of fastest formats includ-
ing the newly developed formats, with the change to the base ranking
on the CPU.

format for every matrix. The fastest formats are thereby selected form the list
of relevant matrices, introduced in the previous section. It can be seen that the
overall performance of all formats is reduced, which is reasonable. The maximum
speedup of all formats has been reduced, especially for the LGCSR format.

Two of the relevant formats also utilize blocked structures, which explains the
reduced maximum speedup of the LGCSR format. The HCSS and LGCSR formats
achieve the fastest runtime for over 25% of the matrices. In the median the HCSS
format looses only about 4% and LGCSR about 7% performance compared to the
best formats. Considering that the formats are compared to the best runtimes of
a large set of formats, that are highly optimized these are very good results.

Table 7.4 presents the ranking of the fastest formats on the CPU taking the
newly developed formats into consideration. It can be seen that the HCSS and
LGCSR format are on the top of the ranking, which shows that both perform very
well, at least for a subset of the matrices. As expected, because of the low speedup
numbers, the CSR5BC format is irrelevant on the CPU. The number of occurrences
of the CSR and DynB format is reduced significantly. A more detailed analysis
showed, that the CSR format is primarily displaced by the HCSS format and
DynB by LGCSR. This matches the findings, that the LGCSR format performs
well, especially for blocked matrices and that the HCSS has a very consistent
performance.

Overall the HCSS and LGCSR format showed high performance on the CPU-
system. The HCSS format thereby shows the more consistent performance over
all matrices, while LGCSR reaches very high speedups for blocked matrices. But
LGCSR has also high performance drops for non-blocked matrices. The CSR5BC
format is not suitable to be used on the CPU.

7.4 Performance Evaluation on the GPU

In this section, the performance of the CSR5BC format is evaluated on the GPU-
system. Among the newly developed formats, only CSR5BC has been implemented
for this platform. Figure 7.4a shows the speedup of CSR5BC to the CSR format.
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Figure 7.4: Speedup of the CSR5BC format to CSR and the best format for every
matrix from the relevant matrix formats on the Tesla K80.

It can be seen, that CSR5BC outperforms CSR for most matrices with a median
speedup of about 1.34. Even higher speedups are achieved for a small number of
matrices.

Figure 7.4b presents the speedup of CSR5BC to the best formats on the GPU.
It can be seen, that for more than 25% of the matrices CSR5BC achieves the best
performance. The median performance loss compared to the fastest formats is
only about 6%. A more detailed analysis showed, that the highest speeddowns are
achieved for matrices where the ELL-BRO format delivered the best runtimes.

While the ELL-based formats deliver a very high performance for some matrices,
the CSR5BC format achieves a much more consistent performance for all matrices.
One reason for this could be the structural independent load balancing of CSR5BC.
Because of the execution model of the GPU it is not possible to directly measure
the load balance, or at least not with acceptable effort. Therefore, a new measure
has been developed, to at least show the dependency of a format to the structure
of the matrices. The measure is the SpMV execution time per non-zero element. It
is calculated by dividing the overall execution time by the number of non-zero ele-
ments of the matrix. In theory, the calculation time per non-zero element should be
very similar for multiple matrices, when the SpMV performance is independent of
the matrix structure. Thus by analyzing the variation of this measure for multiple
matrices, the structural dependency of a format can be evaluated.

Figure 7.5a shows this new measure for the CSR5BC format as well as for the
common CSR and the most relevant format on the GPU, the ELL-BRO format.
It can be seen, that CSR5BC has the by far lowest variation for the per non-
zero runtime. The variation for the both row-based approaches CSR and ELL-
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Figure 7.5: Calculation time per non-zero element of CSR5BC, CSR and ELL-BRO
(left) and the speedup of CSR5BC over CSR5 (right) on the Tesla K80.

BRO is much higher, which means they have a much stronger dependency on the
matrix structure. Even though this measure can not certainly proof the proper
and structural independent load balance of the CSR5BC format, it is the most
likely explanation for the much lower variation. Therefore, it is assumed that the
optimization goal of the CSR5BC format has been fulfilled on the GPU.

The CSR5BC format has been developed based on the existing CSR5 format. A
further analysis has been done, to show the performance differences between the
two formats. Figure 7.5b presents the speedup of the newly developed CSR5BC
format compared to CSR5. It can be seen, that CSR5BC outperforms CSR5 for
nearly all matrices. A slowdown is only achieved for 2 matrices with a maximum
performance loss of about 4%.

The median speedup is 4%, which is significant when considering that the CSR5
implementation is already highly optimized. The analysis clearly shows, that
CSR5BC is a reasonable extension of the CSR5 format. It can significantly in-
crease the performance without any significant drawbacks.

Table 7.5 presents the ranking of the fastest formats including CSR5BC. It can
be seen, that CSR5BC is the fastest format for most matrices. Furthermore the
number of occurrences of the base formats is not reduced significantly, which shows
that the CSR5BC format can not significantly improve the performance for most
matrices. This matches with the previous findings in Figure 7.4b. Nevertheless, the
CSR5BC format delivers a very consistent performance for a wide range of matrices,
which makes it much more general applicable than the other matrix formats.

Overall the CSR5BC format performs very well on the GPU. The results indicate,
that the optimization goal of the CSR5BC format, a structural independent load
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Format
GPU

rank (diff)

CSR5BC 37
ELL-BRO 33 (-1)
ELL 25 (-3)
CSR5 22 (-4)
HYB 16 (-1)
Other 9 (-5)

Table 7.5: Number of occurrences of the formats in the list of fastest formats in-
cluding CSR5BC, with the change to the base ranking on the GPU.

balancing, has been achieved. It shows a very consistent performance and allows a
very efficient calculation for most matrices. Because of the improved load balance
and no required padding, it can outperform ELL-based formats for many matrices.
Furthermore it outperforms the CSR5 format on which it is based.

7.5 Performance Evaluation on the Xeon Phi

In this section, the performance of the developed formats is evaluated on the Xeon
Phi. All three formats have been implemented for this platform. Figure 7.6a
shows the speedup of the formats compared to CSR. It can be seen that the HCSS
format performs much better than CSR and reaches a median speedup of about
1.4. Additionally, only for a very small number of matrices the speedup is below 1.

The very good performance can be explained by the data layout of the format.
All elements are properly aligned and padded to allow an efficient vectorization.
Furthermore, the SpMV implementation is very simple, which is advantageous for
the simplistic cores of the Xeon Phi.

In contrast, CSR5BC and LGCSR are much slower than CSR. They achieve
a speedup only for a very small number of matrices. One reason for the poor
performance could be the complexity of the formats and their index decompression.
Both formats require very complex SpMV implementations. This is especially
problematic, as the cores of the Xeon Phi only support in-order execution.

Additionally, the data layout of the LGCSR is not optimized for the utilization
of vector units. Hence, only parts of the calculation can be done using vector units.
Since the Xeon Phi heavily relies on the utilization of vector units, this explains
the even worse performance of LGCSR compared to CSR5BC.

Figure 7.6b presents the speedup of the newly developed formats to the best
format for every matrix. It can be seen that the speedups of all formats are lower
compared to the CSR speedups. Furthermore, the extreme outliers are no longer
present. The number of matrices with a speedup above 1 for CSR5BC and LGCSR
is even smaller than before.
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Figure 7.6: Speedup of developed formats to CSR and the best format for every
matrix from the relevant matrix formats on the Xeon Phi.

Format
Phi

rank (diff)

HCSS 68
CSR5 8 (-15)
CSR 6 (-51)

Table 7.6: Number of occurrences of the formats in the list of fastest formats in-
cluding all newly developed formats, with the change to the base ranking
on the Xeon Phi.

The performance of the HCSS format is very good and it reaches a median
speedup of about 1.3. Even the 25th percentile is above 1, which means that
the format outperforms the other matrix formats on at least 75% matrices of the
matrix set. Only for a small number of matrices the HCSS format reaches very
low speedups. This shows that the HCSS format is by far the best format on the
Xeon Phi for most matrices.

Table 7.6 shows the ranking of the fastest formats on the Xeon Phi platform,
taking the new developed formats into consideration. As expected, the CSR5BC
and LGCSR format are not relevant. However, the HCSS format nearly replaces
the existing formats. It delivers the best performance for the majority of matrices.

Overall, HCSS is the only suitable format for the Xeon Phi, among the newly
developed formats. One reason for this is that the optimization goal of the HCSS
format matches very well with the requirements of the Intel MIC architecture.
The format allows a very high vector unit utilization and aligned memory accesses.
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Format
Memory Consumption

(Bit per non-zero)
Measured Estimated

CSR5BC 78.5 77.3
HCSS 90.0 90.6
LGCSR 71.1 68.8

Table 7.7: Median memory consumption and the estimated consumption of the
developed formats for the used set of matrices.

0.8

1.0

1.2

CSR5BC HCSS LGCSR

Matrix Format

C
om

pr
es

si
on

 c
om

pa
re

d 
to

 C
S

R

(a) Compression factor

10−1

100

101

102

103

CSR5BC HCSS LGCSR

Matrix Format

# 
C

S
R

 S
pM

V
 it

er
at

io
ns

 (
lo

g 
sc

al
e)

(b) Conversion effort

Figure 7.7: Amount of compression of the developed formats compared to CSR and
the conversion effort.

Both of which are very important on the Phi.

7.6 Evaluation of the Memory Consumption and
Conversion Effort

In this section, the memory consumption and the conversion effort of the developed
formats is evaluated. Table 7.7 presents the measured median memory consumption
and the memory estimation for the used set of matrices (see Section 5.5). It can
be seen that the memory estimations are quite accurate. Thereby, it should be
mentioned that the estimations are partially based on empirical measurements
based of the same set of matrices.

Figure 7.7a presents the compression of the matrices in the different formats
compared to CSR. It can be seen that the LGCSR format has the lowest memory

88



7.6 Evaluation of the Memory Consumption and Conversion Effort

consumption for most matrices with a median reduction of about 26%. But there
are also some outliers for which no memory reduction could be reached compared
to CSR. These outliers can be explained by the matrix structure. The matrices in
question do not have a blocked structure, which is utilized by the LGCSR format.

The HCSS format has the lowest compression compared to CSR with a median
memory reduction of only about 8%. It can be seen that for over 25% of the
matrices the memory consumption is similar or even increased compared to CSR.
Just as for the LGCSR format this can be explained by structural properties of
the matrices. For matrices with a small number of rows with a large number of
non-zero elements the required padding can increase the memory consumption.
Compared to classic ELL based formats, the effect is significantly reduced by the
data layout of HCSS.

The CSR5BC format shows a very consistent memory reduction without any
extreme outliers. The achieved median reduction is about 19%, placing it between
the other two formats. The very consistent memory consumption can be explained
by the layout of the format. It does not require any padding and the compression
depends only to a small degree on the matrix structure.

Figure 7.7b shows the conversion effort of the three developed formats in number
of CSR SpMV iterations that could be done in the same time. It can be seen that
the HCSS format has the most efficient conversion and it requires only about 8
iterations. The conversion effort of LGCSR is marginally higher with a median of
13 iterations. CSR5BC has the most complex conversion and it needs in median
about 33 SpMV iterations.

The number of CSR SpMV iterations, iconvert can be used together with the
assumed speedup to calculate the required number of SpMV iterations to amortize
the format conversion:

ispmv × tCSR > ispmv × tother + tCSR × iconvert

Where ispmv is the number of required SpMV iterations to amortize the conver-
sion cost. The variables tCSR and tother denote the time required for one SpMV
iteration using the different formats. The speedup expresses the relation between
the two runtimes as speedup = tCSR/tother. The inequation can be simplified and
transformed, to allow a simple calculation of the required SpMV iterations:

ispmv × tother × speedup > ispmv × tother + tother × speedup× iconvert
⇔ ispmv × tother × (speedup− 1) > tother × speedup× iconvert

⇔ ispmv >
speedup× iconvert
speedup− 1

The HCSS format reached a median speedup of about 1.06 on the CPU. Using the
presented inequation the number of iterations for amortizing the conversion effort
is about 141. It should thereby be mentioned that these are only rough estimations,
as the reached speedup and the conversion effort differs for every matrix.
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Block size Kernel

1x1 inlined simd
2x1 transposed inlined simd
2x2 transposed inlined simd
3x1 transposed inlined simd
3x3 inlined simd
4x4 transpoed inlined intrinsic
7x7 inlined normal
8x4 transposed inlined intrinsic
9x3 transposed inlined partial simd

Table 7.8: List of the kernel implementations selected by the DynB autotuning.

Whether the conversion effort is relevant or not strongly depends on the applica-
tion. The same is true for the number of acceptable iterations until the conversion
is amortized. Therefore no general evaluation of the conversion effort can be done
in this work.

7.7 Evaluation of the DynB Autotuning

In this section, the performance of the DynB autotuning approach is evaluated.
In a first step, the performance of the different kernels is analyzed. Afterwards,
the best kernels for the different block sizes are identified and used for the final
performance evaluation.

All measurements for the autotuning are done on the CPU. Overall, 9 out of the
280 possible block sizes have been analyzed: 1x1, 2x1, 2x2, 3x1, 3x3, 4x4, 7x7, 8x4
and 9x3. The block sizes have been selected based on the number of occurrences
in the used set of matrices. A relative small set of block sizes has been selected.
For each block, the more specialized kernels have to be developed and the overall
required benchmark time increases rapidly. Furthermore, the used set of block sizes
should be large enough to evaluate the general feasibility of the approach.

The selection of the optimal kernels for the different block sizes is a manual
process. For each block size and synthetic benchmark matrix, all kernel variants
are ordered by their runtime. By comparing the resulting rankings of the different
benchmark matrices the fastest kernel is selected. The selection is thereby based
on the ranking of the kernels, but also by their speeddown compared to the best
possible kernel.

Table 7.8 shows the finally selected kernels. For most of the kernels the selection
was very clear, as the selected kernel ranked first for all, or nearly all benchmark
matrices. The selection for the block sizes 1x1, 7x7 and 8x4 was more complicated.
No single kernel performed best on the majority of matrices. The kernels have
been selected by comparing the maximum performance loss of multiple kernels.
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7.7 Evaluation of the DynB Autotuning

For the block size 7x7 no ideal kernel could be found at all and therefore the
default implementation is used.

The analysis of the kernel runtimes showed, that a structural dependency ex-
ists at least for some block sizes. The performance of the kernels differs strongly
between the different benchmark matrices for the 7x7 kernel. For the other block
sizes only minor performance differences between the benchmark matrices could be
found.

Overall, it can be seen that all selected kernels are inlined into the SpMV oper-
ation instead of using external function calls. This also means that all kernels are
compiled using the Intel compiler and using the default optimization level, as no dif-
ferent compiler or optimization level can be used for the inlined code. Especially for
the smaller block sizes the simd and transposed simd implementations performed
best. For the larger kernels also other kernels like the intrinsic implementation is
more efficient. The partial simd implementation for the 9x3 blocks calculates 8x3
values using a simd loop, while the remaining 3 elements are calculated separately.
The benchmarks also show that the use of transposed, column-major order blocks
is often advantageous over row-major order.

For the evaluation of the autotuning approach three different SpMV implemen-
tations have been developed and measured. The first version uses only specialized
kernels for the 9 block sizes, that have been optimized by the autotuning. The
blocks of all other block sizes are calculated using the default block implementa-
tion. In the following evaluation this version is called autotuning.

The second implementation is used to demonstrate the optimization potential of
recent compilers. In this version a separate function for every block size is gener-
ated. Every function thereby contains the general block implementation. Because
of the used nested switch case statements the compiler knows the dimensions of
every block and can optimize the general implementation according to it. This
implementation allows the compiler to optimize every possible block size individu-
ally. The individual block kernels can be compared to the loop kernel described in
Section 5.4. In the following this version is called compiler.

The third implementation is a combination of both previously presented versions.
Individual functions for all possible block sizes are generated using the default
implementation. For the 9 optimized block sizes the selected kernels are used
instead of the default kernel. This version is called combined.

Performance Evaluation of the Autotuning

Figure 7.8a presents the sequential performance of the different DynB implemen-
tations compared to the unoptimized implementation. It can be seen, that the
performance is improved by using the autotuning version. The median improve-
ment is only about 3%, but very high speedups could be reached for some matrices.
This result can be explained by the small number of optimized kernels. Speedups
can only be seen for matrices that mostly consist of blocks of the corresponding
size. Because of this, the runtime of many matrices stays the same. It can be seen
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Figure 7.8: Performance of the three optimized versions of the DynB format com-
pared to the unoptimized version.

that for about 25% of the matrices the performance is decreased compared to the
unoptimized implementation

The performance of the compiler optimized implementation is much better than
the default implementation, with a median speedup of about 1.33. It also outper-
forms the autotuning implementation. Since all block sizes are optimized in this
implementation, speedups for most matrices are reasonable. In contrast to the
autotuning implementation the performance is only decreased for a small number
of matrices.

The combined implementation is slower than the compiler optimized version.
This means that the by the autotuning selected kernels are slower than the ones
optimized by the compiler. This shows the high efficiency of the optimizations
done by recent compilers.

The analysis of the autotuning results showed that the loop implementation,
which is assumed to be very equal to the compiler optimized version, also performed
very good in the benchmarks. But for all block sizes other kernels delivered better
performance on the synthetic matrices. This shows that there may be additional
important aspects that are currently not respected in the autotuning approach.
Furthermore, this shows that the developed simple autotuning approach can not
be used to outperform the compiler optimizations.

Figure 7.8b presents the parallel performance of the three different implementa-
tions compared to the unoptimized implementation. It can be seen that only small
speedups can be reached for most matrices using the compiler optimized imple-
mentation. The autotuning version has a median speedup of 0.99 and has some
positive and negative outliers. The median performance of the combined version
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7.8 Discussion and Summary

Format CPU GPU MIC

CSR5BC X
HCSS X ◦1 X
LGCSR X ◦1
1 Not implemented and evaluated.

Table 7.9: Suitability of the newly developed formats on the three different hard-
ware platforms.

does not change compared to the unoptimized version.
Overall only a small speedup of the compiler optimized version can be seen.

This seams unreasonable when comparing the speedups to the sequential speedups
with a median of 1.33. One possible explanation for this is the available memory
bandwidth. In the parallel execution all threads share the overall available memory
bandwidth. The single thread in the sequential execution cannot utilize the com-
plete memory bandwidth [8]. But the single thread can use a much lager fraction
of the bandwidth, compared to a single thread in an application with parallel mem-
ory accesses. Because of this, the sequential implementation is much more limited
by the computation as the parallel implementation. The assumption is that the
optimized computation in the sequential implementation can increase the overall
performance, while the parallel implementation is memory bound. Therefore, the
optimization of the computational part of the execution has a much smaller impact
on the performance of the parallel implementation.

Overall, the evaluation shows that the developed autotuning can only reach small
performance improvements. It is outperformed by the optimizations done by recent
compilers. To allow efficient optimizations, the compiler needs as many additional
information as possible. The developed nested switch case implementation of the
SpMV operation, allows the compiler to optimize every individual block kernel.
Using this the performance of the sequential implementation was improved by over
30%. Only small improvements for the parallel implementation could be reached.

7.8 Discussion and Summary

In the previous sections, the performance of the newly developed formats and the
DynB autotuning has been evaluated. Table 7.9 summarizes the suitability of the
developed formats for the three relevant hardware platforms. It can be seen that
the CSR5BC format showed good performance only on the GPU. There it delivered
a very consistent performance and outperformed the ELL-based formats for many
matrices.

The CSR5BC format has been developed with the focus on a structural indepen-
dent load balancing. The evaluation on the GPU indicates, that this optimization
goal has been reached. Some of the very high speedups of the format can be ex-
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plained by a better load balancing of the CSR5BC format. On the CPU and on the
Xeon Phi these findings could not be confirmed. The measured load balancing on
the CPU showed that the CSR5BC format had no improved load balance compared
to the other developed formats. Therefore, the optimization goal of the CSR5BC
format was achieved only partially. The developed index compression efficiently
reduced the memory consumption of the format. An important disadvantage of
CSR5BC is the high conversion time, compared to the other developed formats.

The HCSS format delivered very good performance on the CPU and outper-
formed all formats on the Xeon Phi. It delivers a very consistent performance,
mostly independent of the matrix structure. Because of the required padding and
the row-based organization it is not completely independent of the matrix struc-
ture. In the implementation process of the format, the vectorization report [20]
of the Intel compiler has been used (see Section 6.2). It showed that the imple-
mentation can be highly vectorized. Additionally the achieved high performance
numbers on the Xeon Phi also indicate a high vector unit utilization. Therefore,
the optimization goal of the HCSS format has been achieved. An important ad-
vantage of the HCSS format is its simplicity over the other two formats. This also
results in the fastest conversion of all developed formats.

The LGCSR format delivered high performance only on the CPU. It is primarily
suited for matrices with blocked structures. Because of the utilization of block
structures the achieved performance also depends on the matrix structure. Signifi-
cant performance drops occur for matrices without any blocked structures. But for
matrices with block structures the lowest memory consumption of all developed
formats was achieved. It achieves significant memory savings compared to CSR
which shows that the optimization goal has been reached. The LGCSR format
requires a quite sophisticated SpMV implementation and the conversion is slightly
slower compared to the HCSS format.

The developed autotuning approach for the DynB format did achieve a perfor-
mance increase for the sequential SpMV implementation. The evaluation showed
that the compiler is capable of creating highly optimized implementations that out-
perform the autotuned version. For achieving this, the compiler has to be provided
with enough additional information for the optimization. Even though, the de-
veloped autotuning approach has been outperformed, the sequential performance
of the DynB format could be improved significantly using the compiler optimiza-
tions. In the parallel implementation a signficant performance increase could only
be achieved for a small number of matrices.

Overall, it could be shown that the used theoretical development approach is
suitable for developing efficient sparse matrix formats. The developed formats did
not deliver high performance on all relevant hardware platforms. This indicates,
that additional requirements and constraints may exist that have not been consid-
ered in this work.
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8 Summary

The target of this work was the development of new and efficient sparse matrix
formats, based on a comprehensive requirements analysis. It should be researched
whether it is possible to develop new and efficient sparse matrix formats using
such a theoretical approach. Furthermore, the formats should be developed for
three different hardware platforms: Intel CPUs, Nvidia GPUs and the Intel MIC
architecture.

The first chapter of this work introduced the terminology and and basic concepts
that are important for the understanding of this work. This included the definition
of sparse matrices and basic sparse matrix formats. Furthermore, the SpMV op-
eration was introduced and the relevant hardware platforms have been described.
Additionally, related work has been presented.

In Chapter 3, a comprehensive requirements analysis has been done. Based on
the analysis of the SpMV operation, a large number of requirements and constraints
for the development of efficient sparse matrix formats have been identified. The
analysis showed that the SpMV operation is a memory bounded problem. There-
fore, many requirements are related to the memory subsystem, but also compute
and application related requirements were identified.

Subsequently, in Chapter 4 an extensive analysis of the optimization techniques
that are used in existing formats has been done. Each of the identified optimization
techniques has been presented in detail with its advantages and disadvantages.
Additionally, the relation between the identified requirements and the optimization
techniques was discussed.

In Chapter 5, the development process of the newly developed formats and the
autotuning approach is described. The development is thereby based on the find-
ings of the requirements analysis and the analysis of the existing optimization
techniques. The focus of the format development was on different optimization
goals.

The following Chapter 6 described the implementation of the developed formats
and the autotuning. The focus thereby was on the description of the conversion
operations and performance critical aspects of the SpMV implementation.

In Chapter 7, the performance of the developed formats and the autotuning has
been evaluated. A comprehensive evaluation of the SpMV performance for the
different formats and hardware platforms has been done. Moreover, the memory
consumption and the conversion effort of the formats was analyzed. Furthermore,
the performance of the developed autotuning approach was evaluated.

In this work, three new sparse matrix formats and an autoutuning approach
have been developed. It could be shown that the used theoretical development
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approach can be used for the development of efficient sparse matrix formats. The
initial assumption that a single format can not achieve optimal performance all
different hardware platforms was partially approved.

Based on the identified requirements and constraints three new sparse matrix
formats have been developed: CSR5BC, HCSS and LGCSR. For all three relevant
platforms at least one of the developed formats achieved a high SpMV performance.
The CSR5BC format is based on the existing CSR5 format and its optimization
goal was the development of a format with a structural independent load balancing.
In the evaluation it could be shown, that the format delivers a decent performance
on the GPU, were it outperformed the classic CSR format, but also ELL-based
formats for many matrices. The main drawbacks of CSR5BC are the complexity
of the SpMV implementation and the high conversion cost. Only on the GPU it
could be shown, that the optimization goal of the format is reached.

The HCSS format has been optimized for the utilization of the available vector
units. It performed very well on the CPU, where it achieves very consistent per-
formance mostly independent of the structural properties of the matrix. On the
Xeon Phi it outperformed all existing formats and reached significant speedups.
Additionally HCSS has the simplest structure and the shortest conversion time of
the developed formats. It could be shown that the format can be highly vectorized,
which means its optimization goal has been achieved.

The focus of the development for the LGCSR format was on the reduction of
the memory demand. It reached very high performance on the CPU, especially for
matrices with blocked structures. According to its development goal it reached the
highest memory reduction compared to the other developed formats. The main
drawbacks of the format are the complexity of the data decompression and its
structural dependency.

The developed autotuning approach for the exiting DynB format only delivered
small speedups. By providing the compiler with many additional information a
much faster implementation could be developed. This implementation reached
significant speedups for the sequential implementation of the DynB format. With
no implementation significant speedups for the parallel DynB implementation could
achieved.

In the evaluation, new metrics have been developed, to allow a proper evaluation
of specific performance aspects of the developed formats. This includes a measure
for the amount of blocked structures in sparse matrices. Furthermore, an indirect
measure for the load balance on the GPU has been developed.

Considering the high performance of the developed formats, further improve-
ments on their implementations may be reasonable. Furthermore, it may be of
interest to analyze the performance of the HCSS format on the GPU. Even though
it has some disadvantages on this platform, it may still deliver considerable per-
formance. Additionally, this work could not find the definite reason for the low
performance of the CSR5BC format on the CPU and the Xeon Phi. An extensive
analysis may reveal additional requirements or constraints for the development of
effective sparse matrix formats.
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A Appendix

1 lastRowPtr = rowPtr[0]
2 for i = 0 to nRows do
3 nextRowPtr = rowPtr[i+ 1]
4 tmp = 0
5 for j = lastRowPtr to nextRowPtr do
6 tmp += values[j]× x[columnIndexes[j]]
7 end
8 y[i] = tmp
9 lastRowPtr = nextRowPtr

10 end
Algorithm 2: SpMV algorithm for the CSR format with reduced memory band-
width.

Matrix Dimension NNZ
NNZ per row

min max avg dispersion

af 0 k101 503625 17550675 15 35 34.85 1.26
af shell1 504855 17588875 20 40 34.84 1.28
atmosmodd 1270432 8814880 4 7 6.94 0.24
atmosmodl 1489752 10319760 4 7 6.93 0.26
audikw 1 943695 77651847 21 345 82.28 42.45
bmw3 2 227362 11288630 2 336 49.65 13.81
bmw7st 1 141347 7339667 1 435 51.93 12.72
bmwcra 1 148770 10644002 24 351 71.55 18.51
bone010 986703 71666325 12 81 72.63 15.81
boneS10 914898 55468422 12 81 60.63 20.37
Chebyshev4 68121 5377761 9 68121 78.94 1061.44
circuit5M 5558326 59524291 1 1290501 10.71 1356.62
circuit5M dc 3523317 19194193 1 27 5.45 2.09
CO 221119 7666057 15 313 34.67 7.04
consph 83334 6010480 1 81 72.13 19.08
crankseg 2 63838 14148858 48 3423 221.64 95.88
Cube Coup dt0 2164760 127206144 24 68 58.76 4.47
dielFilterV2real 1157456 48538952 6 110 41.94 16.15
dielFilterV3real 1102824 89306020 9 270 80.98 36.55
Emilia 923 923136 41005206 15 57 44.42 3.72
F1 343791 26837113 24 435 78.06 40.81
Fault 639 638802 28614564 15 318 44.79 5.16
Flan 1565 1564794 117406044 24 81 75.03 11.43
FullChip 2987012 26621990 1 2312481 8.91 1806.8
G3 circuit 1585478 7660826 2 6 4.83 0.64
Ga10As10H30 113081 6115633 7 698 54.08 82.38

Continued on next page
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Matrix Dimension NNZ
NNZ per row

min max avg dispersion

Ga19As19H42 133123 8884839 15 697 66.74 103.18
Ga41As41H72 268096 18488476 18 702 68.96 105.39
Ge87H76 112985 7892195 7 469 69.85 90.15
Ge99H100 112985 8451395 7 469 74.8 94.54
Geo 1438 1437960 63156690 15 57 43.92 4.4
gsm 106857 589446 21758924 12 106 36.91 15.63
hood 220542 10768436 21 77 48.83 12.82
Hook 1498 1498023 60917445 15 93 40.67 13.95
HV15R 2017169 283073458 1 484 140.33 53.95
inline 1 503712 36816342 18 843 73.09 35.63
kkt power 2063494 14612663 1 96 7.08 7.4
largebasis 440020 5560100 4 14 12.64 1.15
ldoor 952203 46522475 28 77 48.86 11.95
memchip 2707524 14810202 2 27 5.47 2.06
ML Geer 1504002 110879972 26 74 73.72 2.51
msdoor 415863 20240935 28 77 48.67 11.71
m t1 97578 9753570 48 237 99.96 28.56
nd24k 72000 28715634 110 520 398.83 76.94
nd6k 18000 6897316 130 514 383.18 89.17
nlpkkt80 1062400 28704672 5 28 27.02 3.74
nlpkkt120 3542400 96845792 5 28 27.34 3.09
nlpkkt160 8345600 229518112 5 28 27.5 2.7
nlpkkt200 16240000 448225632 5 28 27.6 2.42
nlpkkt240 27993600 774472352 5 28 27.67 2.22
ohne2 181343 11063545 15 3441 61.01 21.09
PR02R 161070 8185136 1 92 50.82 19.7
pre2 659033 5959282 1 628 9.04 22.12
pwtk 217918 11634424 2 180 53.39 4.74
rajat30 643994 6175377 1 454746 9.59 784.58
rajat31 4690002 20316253 1 1252 4.33 1.11
RM07R 381689 37464962 1 295 98.16 68.68
Serena 1391349 64531701 15 249 46.38 9.25
Si34H36 97569 5156379 17 494 52.85 68.93
Si41Ge41H72 185639 15011265 13 662 80.86 126.97
Si87H76 240369 10661631 17 361 44.36 39.69
SiO2 155331 11283503 15 2749 72.64 294.17
thermal2 1228045 8580313 1 11 6.99 0.81
tmt sym 726713 5080961 3 9 6.99 1.01
torso1 116158 8516500 9 3263 73.32 419.59
TSOPF FS b300 c3 84414 13135930 1 41542 155.61 1181.18
TSOPF RS b2383 38120 16171169 2 983 424.22 484.24
x104 108384 10167624 30 324 93.81 29.2
matrix spe1Ref a 900000 18612000 12 21 20.68 0.96
matrix spe1RefDPDP a 1800000 42624000 15 24 23.68 0.96
matrix spe5Ref a 1029000 49529200 28 49 48.13 2.4
matrix spe5Ref dpdp a 2058000 113464400 35 56 55.13 2.4
matrix spe5Ref dpdp b 2058000 113464400 35 56 55.13 2.4
matrix spe5Ref dpdp c 2058000 113464400 35 56 55.13 2.4
matrix spe5Ref dpdp d 2058000 113464400 35 56 55.13 2.4
matrix spe5Ref dpdp e 2058000 113464400 35 56 55.13 2.4
matrix spe10 a 2153544 29192160 2 14 13.56 1.11
matrix spe10 dpdp a 3506080 50928264 2 16 14.53 1.96

Table A.1: List of matrices used in the evaluation with additional structural prop-
erties.
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Figure A.1: Block diagram of the Nvidia Kepler architecture [1].
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