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 Abstract  
 
An algorithm for optimally edge coloring series parallel graphs is presented in this paper. It 
contains a linear time implementation, as well as a parallel implementation, of the algorithm 
that runs in O(log3 n) time using O(n) processors. The sequential implementation, which is 
optimal, improves the best-known algorithm. The parallel implementation of the algorithm is 
the first known NC algorithm for this problem. The algorithm is based on the ear 
decomposition of a graph. It is shown constructively that for every biconnected series 
parallel graph there exists an open ear decomposition, such that its corresponding tree of ears 
has an O(log n) depth, and this ear decomposition contains no ear whose endpoints are 
connected by a single edge in its parents. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction 
 
The problem of edge coloring graphs is to assign colors to the edges of a graph in such a way 
that edges with a common endpoint have different colors. The minimum number of colors 
necessary to color the edges of a graph G is called the chromatic index of G, and is denoted 
by x'(G). The well known theorem of Vizing states that  x'(G) is either    (G) or   (G) + 1 
for each graph, where   (G) denotes the maximum degree of a vertex of G. The roots of the 
problem can be traced to the "four-color conjecture". According to this conjecture (proved by 
Appel and Haken [AH76]), every planner map can be colored with four colors, so that no 
regions with a common border get the same color. 
Throughout the paper, G(V,E) denote an undirected graph of n = |V| vertices and m = |E| 
edges. The graphs contain no loops and no multiple edges. degG(v) is used to denote the 
degree of v in a graph G. 
 

 
2. Application of Graph Coloring 
 
 
The practical applications of edge coloring are various scheduling problems, design of 
experiments etc. For example, when a given scheduling problem in a distributed memory 
parallel machine has been partitioned, and two adjacent processors need to communicate 
they do a pairwise exchange of data. It is needed to find out a minimum communication 
schedule so that all data have been exchange. This problem can be formulated as a graph 
problem as follows. The processors are represented by the vertices of the graph GR; the need 
to communicate between two processor is represented by an edge between two processors. A 
minimum schedule corresponds to an optimal edge coloring of GR.  GR will result in a series 
parallel graph, when the distributed memory parallel machine is a minimum isolated failure 
immune network or a 2-tree. 
 
 
3. Series Parallel Graph 
 
 
One of the classical classes of graphs is series parallel graphs. A well studied problem is the 
problem to recognize series parallel graphs. Series parallel graphs have treewidth at most 
two. (Some authors mistakenly state that the class of series parallel graphs equals the class of 
graphs of treewidth two, but for instance K1,3 is not series parallel.). If a series parallel graph 
is a triple (G,s,t), with G = (V, E) a graph , and s, t ....V,  we can say that G is a series parallel 
graph. s and t are called terminals of G; we also call s the source and t the sink of G. 
 
 
 
 



3.1 Recognition Algorithm for series Parallel Graph 
 

3.1.1 Hans L. Bodlaender and Babette de Fluiter algorithm 
 
 
If G is an undirected, not necessarily simple graph with two specified vertices s and t, and we 
want to determine if (G,s,t) is a series parallel, the algorithm consists of two main phases. 
The first phase consists of O(log m) reduction rounds. In each reduction round, a number of 
reductions is carried out, each round (when the input is a series parallel graph) reducing the 
number of edges of G with at least a constant fraction. In the first phase, the input graph is 
reduced to a single edge {s,t}, if and only if it is series parallel. If (G,s,t) is not series 
parallel, i.e., we do not have a single edge after the first phase, then the algorithms stops. 
Otherwise, we proceed with the second phase. In the second phase, all reductions are 
undone, in an equally large number of rounds. During the ‘undoing’ of the reductions, we 
have to maintain a minimal sp-tree of the current graph. (One can additionally also maintain 
a binary sp-tree of the current graph). 
 
 
 

3.1.2 Eppstein [ Ep 92] Algorithm  
 
 
Theorem:   
A biconnected graph G is a series parallel graph if and only if every open air decomposition 
of G is nested. 
 
Description: 
An ear decomposition of an undirected biconnected graph G is a partition of the edges of G 
into a sequence of ears E1, E2, E3, ................, En. Each ear is a simple path in G with the 
following properties: 
 
1. If two vertices in the path are the same, they must be the two endpoints of the path. 
2. The two endpoints of each ear Ei, i  > 1, appear in the previous ears Ej and Ej ,̀ with j < i 

and j̀  < i. 
3. No interior point of Ei is in Ej for any j < i. 
The first ear Ei can be either a single edge or a cycle. In this paper, we assume that the first 
ear is a cycle. An open ear decomposition in one in which the endpoints of each ear, except 
the first one, must be distinct. 
 
Given a graph G and an open ear decomposition ED = { E1, E2, E3, ......, Ek } of G, we say 
that Ei is nested in Ej if j < i and the endpoints of Ei both appear in Ej. For such nested ears, 
let the nest interval of Ei in Ej be the path in Ej between the two endpoints of Ei. ED is nested 
if the following conditions hold: 
 
1. For each i > 1 there is some j < i  such that Ei is nested in Ej. 



2. If two ears Ei and Ei` are both nested in the same ear Ej , then either the nest interval of Ei 
contains that of Ei ,̀ or vice versa, or the two nest intervals are disjoint; i.e., no two nest 
intervals in each ear cross each other. 

 

4. A Compaction Lemma 
 
Eppstein’s [Ep 92] results showing, in what we call a Compaction Lemma, that every 
biconnected series parallel graph has an open air decomposition ED, where its corresponding 
tree of ears is of O(log n ) depth. The ear decomposition contains no ear whose endpoints are 
connected by an edge in its parent. The Compaction Lemma is important for establishing the 
edge coloring problem in NC, and for reducing matching and coloring problems in series 
parallel graphs, into similar problems in simpler graphs. 
We consider a series parallel graph, decomposed into an open ear decomposition EED, with 
its corresponding tree of ears TE. For the ear decomposition we use a data structure in which 
each edge in ear Ei knows the index i and has two pointers, pointing to the two neighboring 
edges on both sides of the edge in Ei. 
 
The operation reducei, compress TE, so that the depth of the resulting tree of ears in   
O(log n). It is performed by the operation with respect to centroid decomposition of TE. 
 
The operation absorb modifies the tree of ears so that there are no ears whose endpoints are 
connected by a single edge in its parent. Literally, a parent ear absorbs its child, while 
leaving out a single edge. 
 
Procedure Tree –Trim (TE) 
Input: A tree of ears TE of an open ear decomposition of a biconnected series parallel graph 
G. 
Output: A tree of ears of G of O(log n) depth.  
 
1 Find a centroid decomposition of TE; 
2 for i     1 to [log n] do 
3 reducei (TE); 
4 for every ear Ej in parallel do 
5 absorb (Ej);  
 
 
 
5. The Generic Edge Coloring Algorithm 
 
The generic edge coloring algorithm consists of two phases: 
1. A reduction phase, in which we reduce O(n) edges from the graph, while decrementing 

the maximum degree of the reduced graph. 
2. A coloring phase, in which we begin by coloring a degree 3 series parallel graph and 

continue by coloring the reduced edges in the reverse order of their removal.  



Let an edge-ear be an ear that consists of a single edge, and let a two edge ear be an ear that 
consists of exactly two edges. We define three types of edges to be reduced: 
 
An edge (u , v) is of type- 
 
1. If either u or v has degree1. 
 
2. If they belong to a pair of coinciding two-edge ears. Two ear Ei and Ej are coinciding if 

the endpoints of Ei are equal to the endpoints of Ej. 
 
3. Edges that belong to an ear matching. 
 
Edges of type 1 and 2 that are reduced in iteration k is denoted by Rk, and edges of type 3 
that are reduced in iteration k by Mk. 
 
Algorithm SPColor: 
 
Reduction phase: 
 ’       (G) 
k       0 
G0          G 
While      (Gk) > 4 do 

Find an open ear decomposition ED of Gk 
Construct the tree of ears of ED 
Find Rk the set of edges of type 1 and type2 
Gk+1       Gk – Rk 
If    (Gk+1) > 4 then  

Find an  ear matching Mk in Gk+1 
Gk+1        Gk+1 – Mk 
K         k + 1 

 fi 
 od 
  
Coloring phase: 
 find a 3 edge coloring of Gk 
 for i       k downto 0 do 
 color the edges of Rk using the least possible colors 
 color the edges of Mk with      ‘ 

’     ’ - 1 
 od. 
 
 

 
 
 



6. The Sequential Implementation 
 
6.1 Ear Matching 
 
To obtain a matching in a series parallel graph that is “sufficiently” large and matches all 
vertices of maximum degree, the problem is reduced into finding such a matching in a closed 
ear path graph. The algorithm traverses the tree of blocks of the graph and finds a matching 
that always matches the top cut-vertex of every block. For every block, open ear 
decomposition is found and traverse in preorder its compacted tree of ears. Then a match is 
found for every ear path; thus the matching state of the first and last edges in the path might 
be forced, as a result of a match that was obtained for some predecessor of the present ear 
path graph. 
 
The following conditions are set for diagonal D that belongs to a matching in an ear path 
graph. 
 
Rule D1: If D is an odd length ear select the two end-edges to the matching. 
 
Rule D2: If D is an even length ear select one end-edge of D, and one path edge. 
  
The details of ear matching are given in Procedure Ear-Matching. 
 
Procedure: Ear-Matching (G´, M) 
Input: A series parallel graph G .̀ 
Output: An ear matching of M of G .́ 
 

1. Find connected components and biconnected components in G .̀ Construct the 
tree TB of biconnected components for every connected component. Traverse the 
nodes of TB (in preorder) and do the following for every node Gv of TB. 

 
2. If Gv is not singleton then 

(2.1) Find an open ear decomposition of Gv, and the tree of ears TE of Gv, starting 
from a cycle that includes the top-cut vertex t. 
(2.2) CT       Tree-Trim (TE). 
(2.3) Traverse the nodes of CT (in preorder): For every node constructs the ear 
path graph Hk, and close it. If one or two edges already belong to the matching, 
then simply select edges alternately, from the path edges of Hk. Otherwise use 
Algorithm Match-Polygon to find a matching M in Hk. 
(2.4) Apply rules D1 and D2 for every diagonal that belongs to M. 

3. if Gv is a singleton (x,y) then 
if x is unmatched, add (x,y ) to the matching M. 

end Ear Matching. 

 
 



6.2 Coloring a Series Parallel Graph of Degree 3 
 
To obtain an optimal edge coloring of a series parallel graph of degree3, a coloring algorithm 
that is local, i.e., the colors are assigned to edges, based on local information, and then adjust 
the colors as global information becomes available. The coloring is divided into four stages: 
 
1. Coloring a simple graph (ladder graph). 
2. Coloring an ear path graph, using the coloring of ladder. 
3. Coloring a biconnected series parallel graph, using the coloring of an ear path graph. 
4. Adjusting colors between different biconnected components. 
 
 
 

6.2.1 Edge Coloring Ladder Graphs 
 
A graph is a ladder  graph L if it is a biconnected series parallel graph of degree at most 
three, and for some open air decomposition ED = { E1, E2, ....., Ej} of L, E2,...., Ej are nested 
in E1, and the nesting tree of E1 is a path. Ej is called the perimeter , and E2,..........Ej are 
called the steps of L. 
 
Procedure Color-A-Ladder (L) 
 
Input: A ladder graph L. 
 
Output: An edge coloring of L. 
1. Partition L into L0,.........,Lr, where each Li is a subladder consists of nonsingle steps, 

closed by two single steps. 
 
2. For i       0 to r-1 color the perimeter of Li, such that the two edges that are incident on 

Li+1, and the single step shared by Li+1 , are colored in three different colors. Assign two 
different colors to the end edges of internal steps. The choice of colors depends on the 
colors assigned to Li-1, 1 < i  <  r-1. For L0 the choice of colors depends on the colors of 
the two edges that were determined by a coloring of another ladder previously. 

 
3. Color the perimeter of Lr, such that two edges e1 and e2 that are incident to L in the ear 

path graph are colored in two different colors. If  Lr ends in a nonsingle step, connect e1 
and e2 by a virtual edge to form a subladder. ( This guarantees that e1 and e2 are colored 
in two different colors.) 

 
End Color-A-Ladder. 
 
 
 



6.2.2 Edge Coloring Ear Path Graphs 
 
 
Color-Ear-Path finds a coloring of an ear path graph Hk, by bottom up traversal of the 
nesting tree NTk. NTk is traversing according to its centroid decomposition, starting from 
centroid level2. Leaves (that are centroid level 1) are associated with their parents. 
 
Procedure Color-Ear-Path (Ek) 
 
Input: An ear Ek. 
 
Output: An edge coloring of Ek that is consistent with its parent and children in CT. 
 
Phase One: Construct the ear path graph Hk of Ek, and the nesting tree NTk of Hk. 
      Find a centroid decomposition of NTk. 
 
Phase Two: Do for i       2 to log n: 

For every centroid path p of centroid level i , let L be the subgraph of Hk 
associated with p and all the leaves that are children of nodes in p. Then Color-A-
Ladder(L), and contract L from Hk. 

end Color-Ear-Path.  
 
 
6.2.3 Edge Coloring Biconnected Series Parallel Graphs of 
Degree 3 
 
 
To obtain a 3-edge coloring of a biconnected series parallel graph of degree 3, the compacted 
tree of ears is traversing in preorder, finding for every ear a coloring of its ear path graph. 
 
Algorithm 3Color(G) 
 
Input: A biconnected series parallel graph G of degree 3. 
 
Output: A 3-edge coloring of G. 

1. Find an ear decomposition ED of G, and construct the tree of ears TE(ED). 
2. CT       Tree-Trim (TE). 
3.  for every ear Ek of CT in preorder do 

(3.1) Color-Ear-Path (Ek); 
(3.2) update colors in Ek according to the colors of the end-edges of Ek, that 
were assigned by its parents. 

end 3Color. 
 



 
7. The Parallel Implementation  
 
 
A parallel algorithm is considered efficient if its time complexity is polylogarithmic, with 
polynomially many processors on the PRAM. NC denotes the class of problems that has 
such algorithm. 
 
 
 
7.1  Parallel Ear Matching 
 
The parallel implementation of the ear matching algorithm adds another dimension to the 
complexity, and that is the necessity to find a matching in each block that is consistent with 
matching in other blocks. A solution for that would be to find a decomposition of TB that 
would allow us to process several blocks in parallel, which in turn would guarantee a 
polylogarithmic procession time. The centroid decomposition again used, this time for TB, 
and process blocks at the same centroid level concurrently, instead of traversing TB in 
preoreder. Two different matching is founded for every block, so that one of them is later 
selected as a final matching according to the status of the top cut-vertex of the block. 
 
Algorithm Par-Ear-Matching 
 
Input: An subgraph G  ́of G. 
 
Output: An ear matching M of G  ́, that covers all vertices of maximum degree. 
 

1. Find connected components in G .́ Find biconnected components in G ,́ and 
construct all TB’s. Find a centroid decomposition of all TB’s. Make all centroid 
paths indistinguished. 

 
2. for each biconnected component BC in parallel do the following: 

 
(2.1) Find an open ear decomposition of BC, starting from a cycle that contains 
the top cut-vertex of BC, and construct its tree of ears TE. 
 
(2.2) CT        Tree-Trim(TE). 
 
(2.3) for i        1 to 2 do 

 {We find two machine M1 and M2  in BC , M1 assumes that the top cut-vertex 
is  matched, and M2  assumes that is unmatched.} 

 
2.3.1 Mi        0 



2.3.2 for j        0 to height (CT) – 1 do 
for every ear Ek in depth in parallel do 
 -construct the ear path graph Hk for Ek , and close Hk. 

 -If one of two edges already belong to the matching, then 
alternately add edges to Mi,from the path edges of Hk.  
Otherwise,  
Mi        Mi  U Modified – Match – Polygon (Hk ). 

3. If more than one centroid path starts at the same vertex then make one of them 
distinguished. 

 
4. for every centroid path r in every TB in parallel find distance; for every block that 

belongs to r. 
 

5. for i       [log n] downto 0 do {top-down traversal of TB} 
(5.1) for each centroid path r in centroid level i  in parallel do Match  Singleton. 
(5.2) for each BC in centroid level I of TB in parallel choose the matching that 
corresponds to the status  of its top cut-vertex. If its top cut-vertex is already 
matched add M1 to M, otherwise add M2 to M. 

  
 end Par-Ear-Matching.   
 
 
 

7.2 Edge Coloring Series Parallel Graphs of Degree 3, in 
Parallel 

 
To run efficiently in parallel, the modified Algorithm 3Color is as follows: It now comprises 
two phases of tree traversals. 
 
Phase One : each ear path graph is colored in parallel, by traversing the nested tree; 
Phase Two: an update of the colors is done while traversing the tree of ears, in parallel, level 
by level. 
 
When edge coloring ladders are in parallel, colors are adjusted between subladders, in a 
“binary tree fashion”. For that purpose, for each ladder Li we color two edges that are 
incident on Li-1 and the single ladder step shared by Li-1, in three different colors. Colors are 
changed in only one of the two subladders. 
 
Lemma : Algorithm Color-Ear-Path can be executed in O(log2 n) using n processors on an 
EREW PRAM.  
 
Proof:  Phase one takes O(log n) using n processor [Ep 92]. Edge coloring ladders that 
belong to some centroid level in the nesting tree takes O(log n ) time using n processors. This 
is also the complexity for contracting the ladder graphs. But since all the edges in a 
subladder need to read the colors of the six edges in the boundary, this can be done only on a 



CREW PRAM. By a simple broadcast of the colors that create the read conflicts, the 
algorithm can be executed on an EREW model with an additional factor of O(log n) time. 
Hence, Phase two takes O(long3 n) time using n processors. Phase tree takes O (log2 n) time 
using n processors on an EREW PRAM. Thus, the overall running time is O(log3 n) using n 
processors on an EREW PRAM. 
 
 
 

7.3 The complexity of the Parallel Implementation of 
Algorithm SPColor 
 
 
Theorem:   
Algorithm SPColor optimally edge colors series parallel graphs on an EREW PRAM in 
O(log3 n) time using a processors. 
 
Proof: 
Maon etal. [MSV86] showed how to find an ear decomposition ED and how to construct tree 
of ears TE in parallel for any graph. In fact, the edges of TE are obtained during the 
construction of the ear decomposition.  Gazit [Ga 91] showed how it can be done on an 
EREW PARM for planar graphs. We find type1 edges on O(1), by assigning a processor to 
every vertex in Gk. For edges of type (2) we do the following: find a list of all two-edge ears, 
using the doubling technique on ED. Sort the list to obtain a partition of the list into subsets 
of coinciding two-edge ears. A type (2) reduction consists of a pair of coinciding two-edge 
ears. In order to avoid conflicts in reducing the edges from the adjacency list of Gk., we use a 
data structure called conflict graph X. The set of vertices of X are type (1) and type (2) 
reductions, and it has an edge if two reduction attempt to read from or write into the same 
entry in the adjacency list. We use the algorithm of Goldberg et al [GPS 87] to find the 
maximal independent sets that cover X. The complexity is done in O(log* n) time using n 
processors. We now assign a processor fro each reduction, and let each reduction processor 
delete an edge, or a pair of coinciding two-ears. Each such deletion is stored in Rj

k  where j is 
some independent set in X. The matching process in Gk  takes O(log2  n ) time using n 
processors, which yields a running time of O(log3  n) time with n processors for the whole 
reduction phase. 
 
The running time of the parallel version of Algorithm 3Color is dominated by Procedure 
Color-Ear-Path. A concurrent application of Procedure Color-Ear-Path on all ear path graphs 
takes O(log3 n) with n processors. Updating the colors between the different ear path graphs 
takes O(log n) time using n processors on the CREW PRAM, which grows by a factor of log 
n on an EREW PRAM. Thus algorithm 3Color takes O(log3 n) using n processors on an 
EREW PRAM. Adjusting colors between different block s is done by contraction the tree of 
blocks, according to its centroid decomposition, in O(log2 n) time using n/log n processors. 
The allocation of colors to the reduction of types(1)  and (2) is done by the doubling 
technique and takes O(logn) time using n processors. The coloring of the edges is done in 
constant time using n processors. 



8. Conclusion 
 
  
In the above discussion, new observations are combined with recent results about series 
parallel graphs to obtain an algorithm for edge coloring series parallel graphs that used a 
minimum number of colors. This work was driven by an attempt to find an NC algorithm for 
the problem and ended with an improved sequential algorithm, proving the importance of the 
design of parallel algorithms in a broader context. It has been shown that every series parallel 
graphs can be decomposed into ear decomposition that yields a tree of ears of log n depth. 
 
Finally, we can note that a possible direction of simplifying the algorithm is to use a 
maximum weighted matching algorithm. By finding a proper weight assignment to the edges 
we can possibly guarantee that the matching process matches all vertices of maximum 
degree. This could be obtained by setting the following weights: N + 1 for edges covering 
one maximum-degree vertex, 2N for edges covering two such vertices, and 1 for all other 
edges, for some sufficiently large N . This will give a matching process that covers all 
maximum degree vertices and used as many edges as possible within that constraint. The 
proof of the present algorithm shows that such a matching process exists and that it has 
enough edges in it.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



References 
 
 
[AH76] K.I . Appel And W. Haken, Every Planner map is four colourable, Bull, Amer. 
Math. Soc. 82(1976) 711-712 
 
[CD95] Yuval Caspi And Eliezer Dekel, Edge Coloring Series Parallel Graph, Journal of 
Algorithm 18, (1995), 296-321. 
 
[Ep 92] D. Eppstein, Parallel recognition of series-parallel graphs, Inform. Comput. 
98(1992),  41-55 
 
Hans L. Bodlaender and Babette de Fluiter, Parallel Algorithms for Series Parallel 
Graph. Department of Computer Science, Utrecht University, Netherlands. 
 
[MSV86] Y. Maon, B. Schieber,And U. Vishkin, Parallel ear decomposition search (EDS) 
and ST-numbering in graphs, Theoret. Comput. Sci. 47 (1986) , 277-298. 


